从关键字字符串中删除重音符号
这是聊天机器人的文字处理代码,其中删除了一些文章和介词,使机器人更容易阅读
import json
from random import choice
class ChatterMessage:
def __init__(self, raw):
self.raw = str(raw).lower()
self.processed_str = self.reduce()
self.responses = self.get_responses()
self.data = self.process_response()
self.response = choice(self.data['response'])
def remove_unwanted_chars(self, string):
list_of_chars = ['?', ".", ",", "!", "@", "[", "]", "{", "}", "#", "$", "%", "*", "&", "(", ")", "-", "_", "+", "="]
new_str = ""
for char in string:
if char not in list_of_chars:
new_str += str(char)
return new_str
def get_responses(self, response_file="info.json"):
with open(response_file, 'r') as file:
return json.loads(file.read())
def reduce(self):
stopwords = ['de', 'a', 'o', 'que', 'e', 'é', 'do', 'da', 'em', 'um', 'para', 'com', 'não', 'uma', 'os', 'no', 'se', 'na', 'por', 'mais', 'as', 'dos', 'como', 'mas', 'ao', 'ele', 'das', 'à', 'seu', 'sua', 'ou', 'quando', 'muito', 'nos', 'já', 'eu', 'também', 'só', 'pelo', 'pela', 'até', 'isso', 'ela', 'entre', 'depois', 'sem', 'mesmo', 'aos', 'seus', 'quem', 'nas', 'me', 'esse', 'eles', 'você', 'essa', 'num', 'nem', 'suas', 'meu', 'às', 'minha', 'numa', 'pelos', 'elas', 'qual', 'nós', 'lhe', 'deles', 'essas', 'esses', 'pelas', 'este', 'dele', 'tu', 'te', 'vocês', 'vos', 'lhes', 'meus', 'minhas', 'teu', 'tua', 'teus', 'tuas', 'nosso', 'nossa', 'nossos', 'nossas', 'dela', 'delas', 'esta', 'estes', 'estas', 'aquele', 'aquela', 'aqueles', 'aquelas', 'isto', 'aquilo', 'estou', 'está', 'estamos', 'estão', 'estive', 'esteve', 'estivemos', 'estiveram', 'estava', 'estávamos', 'estavam', 'estivera', 'estivéramos', 'esteja', 'estejamos', 'estejam', 'estivesse', 'estivéssemos', 'estivessem', 'estiver', 'estivermos', 'estiverem', 'hei', 'há', 'havemos', 'hão', 'houve', 'houvemos', 'houveram', 'houvera', 'houvéramos', 'haja', 'hajamos', 'hajam', 'houvesse', 'houvéssemos', 'houvessem', 'houver', 'houvermos', 'houverem', 'houverei', 'houverá', 'houveremos', 'houverão', 'houveria', 'houveríamos', 'houveriam', 'sou', 'somos', 'são', 'era', 'éramos', 'eram', 'fui', 'foi', 'fomos', 'foram', 'fora', 'fôramos', 'seja', 'sejamos', 'sejam', 'fosse', 'fôssemos', 'fossem', 'for', 'formos', 'forem', 'serei', 'será', 'seremos', 'serão', 'seria', 'seríamos', 'seriam', 'tenho', 'tem', 'temos', 'tém', 'tinha', 'tínhamos', 'tinham', 'tive', 'teve', 'tivemos', 'tiveram', 'tivera', 'tivéramos', 'tenha', 'tenhamos', 'tenham', 'tivesse', 'tivéssemos', 'tivessem', 'tiver', 'tivermos', 'tiverem', 'terei', 'terá', 'teremos', 'terão', 'teria', 'teríamos', 'teriam']
custom_filter = []
keywords_list = []
strlist = self.raw.split(" ")
for x in strlist:
if x not in stopwords and x not in custom_filter:
keywords_list.append(self.remove_unwanted_chars(x))
return keywords_list
def process_response(self):
percentage = lambda x, y: (100 * y) / x
total = sum(len(x['keywords']) for x in self.responses)
most_acc = 0
response_data = None
acc = 0
for value in self.responses:
c = 0
for x in value['keywords']:
if str(x).lower() in self.processed_str:
c += 1
if c > most_acc:
most_acc = c
acc = percentage(total, most_acc)
print(acc)
response_data = value
if acc < 6:
return {"response": "Sorry, I do not understand. Be more clear please"}
for x in self.processed_str:
if x not in response_data['keywords']:
response_data['keywords'].append(x)
return response_data
if __name__ == '__main__':
while True:
k = input("Você: ")
res = ChatterMessage(k)
.response
print("Bot:", res)
如何从关键字字符串中删除重音符号以“让聊天机器人更容易阅读”?我找到了这个解释:如何使用删除字符串重音Python 3?但我不知道它将如何应用于此代码,因为机器人总是停止响应
This is a word processing code for chabot, in it it removes some articles and prepositions to make it easier for the bot to read
import json
from random import choice
class ChatterMessage:
def __init__(self, raw):
self.raw = str(raw).lower()
self.processed_str = self.reduce()
self.responses = self.get_responses()
self.data = self.process_response()
self.response = choice(self.data['response'])
def remove_unwanted_chars(self, string):
list_of_chars = ['?', ".", ",", "!", "@", "[", "]", "{", "}", "#", "quot;, "%", "*", "&", "(", ")", "-", "_", "+", "="]
new_str = ""
for char in string:
if char not in list_of_chars:
new_str += str(char)
return new_str
def get_responses(self, response_file="info.json"):
with open(response_file, 'r') as file:
return json.loads(file.read())
def reduce(self):
stopwords = ['de', 'a', 'o', 'que', 'e', 'é', 'do', 'da', 'em', 'um', 'para', 'com', 'não', 'uma', 'os', 'no', 'se', 'na', 'por', 'mais', 'as', 'dos', 'como', 'mas', 'ao', 'ele', 'das', 'à', 'seu', 'sua', 'ou', 'quando', 'muito', 'nos', 'já', 'eu', 'também', 'só', 'pelo', 'pela', 'até', 'isso', 'ela', 'entre', 'depois', 'sem', 'mesmo', 'aos', 'seus', 'quem', 'nas', 'me', 'esse', 'eles', 'você', 'essa', 'num', 'nem', 'suas', 'meu', 'às', 'minha', 'numa', 'pelos', 'elas', 'qual', 'nós', 'lhe', 'deles', 'essas', 'esses', 'pelas', 'este', 'dele', 'tu', 'te', 'vocês', 'vos', 'lhes', 'meus', 'minhas', 'teu', 'tua', 'teus', 'tuas', 'nosso', 'nossa', 'nossos', 'nossas', 'dela', 'delas', 'esta', 'estes', 'estas', 'aquele', 'aquela', 'aqueles', 'aquelas', 'isto', 'aquilo', 'estou', 'está', 'estamos', 'estão', 'estive', 'esteve', 'estivemos', 'estiveram', 'estava', 'estávamos', 'estavam', 'estivera', 'estivéramos', 'esteja', 'estejamos', 'estejam', 'estivesse', 'estivéssemos', 'estivessem', 'estiver', 'estivermos', 'estiverem', 'hei', 'há', 'havemos', 'hão', 'houve', 'houvemos', 'houveram', 'houvera', 'houvéramos', 'haja', 'hajamos', 'hajam', 'houvesse', 'houvéssemos', 'houvessem', 'houver', 'houvermos', 'houverem', 'houverei', 'houverá', 'houveremos', 'houverão', 'houveria', 'houveríamos', 'houveriam', 'sou', 'somos', 'são', 'era', 'éramos', 'eram', 'fui', 'foi', 'fomos', 'foram', 'fora', 'fôramos', 'seja', 'sejamos', 'sejam', 'fosse', 'fôssemos', 'fossem', 'for', 'formos', 'forem', 'serei', 'será', 'seremos', 'serão', 'seria', 'seríamos', 'seriam', 'tenho', 'tem', 'temos', 'tém', 'tinha', 'tínhamos', 'tinham', 'tive', 'teve', 'tivemos', 'tiveram', 'tivera', 'tivéramos', 'tenha', 'tenhamos', 'tenham', 'tivesse', 'tivéssemos', 'tivessem', 'tiver', 'tivermos', 'tiverem', 'terei', 'terá', 'teremos', 'terão', 'teria', 'teríamos', 'teriam']
custom_filter = []
keywords_list = []
strlist = self.raw.split(" ")
for x in strlist:
if x not in stopwords and x not in custom_filter:
keywords_list.append(self.remove_unwanted_chars(x))
return keywords_list
def process_response(self):
percentage = lambda x, y: (100 * y) / x
total = sum(len(x['keywords']) for x in self.responses)
most_acc = 0
response_data = None
acc = 0
for value in self.responses:
c = 0
for x in value['keywords']:
if str(x).lower() in self.processed_str:
c += 1
if c > most_acc:
most_acc = c
acc = percentage(total, most_acc)
print(acc)
response_data = value
if acc < 6:
return {"response": "Sorry, I do not understand. Be more clear please"}
for x in self.processed_str:
if x not in response_data['keywords']:
response_data['keywords'].append(x)
return response_data
if __name__ == '__main__':
while True:
k = input("Você: ")
res = ChatterMessage(k)
.response
print("Bot:", res)
How to remove accents from keyword strings to "make it easier" for chatbot to read? I found this explanation: How to remove string accents using Python 3? But I don't know how it would be applied to this code as the bot always stops responding
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以使用 Python 包 unidecode 将特殊字符替换为 ASCII 等效字符。
您可以将其应用于输入和关键字。
如果有意义的话,您还可以强制字符串全部为小写。这将使您的字符串比较更加稳健。
因为您请求了完整的代码:
You could use the Python package unidecode that replaces special characters with ASCII equivalents.
You could apply this to both the input and keywords.
If it makes sense, you could also force the strings to be all lowercase. This will make your string comparisons even more robust.
Because you requested the entire code: