语义分割中损失很小,而验证准确性保持一致
我基本上正在完成本教程,但使用不同的数据集: https://keras.io/examples/vision/deeplabv3_plus/ 5620 1142 28280 5000 5000
本教程使用 CIHP 数据集,即:
- 20 个类别
- 28280 个训练图像和 5000 个验证图像
我使用的是面部/头部分割商业数据集,即:
- 14 个类别
- 5620 个训练图像和 1142 个验证图像
但是当我切换数据集(并且仅切换数据集。不执行其他操作),这我的模型的性能是这样的:
Epoch 1/50
1404/1404 [==============================] - 1302s 922ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 2/50
1404/1404 [==============================] - 1300s 926ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 3/50
1404/1404 [==============================] - 1301s 927ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 4/50
1404/1404 [==============================] - 1297s 924ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
为什么我会遇到这个问题?我做错了什么?我该如何修复它?
I am basically working through this tutorial but with a different dataset:
https://keras.io/examples/vision/deeplabv3_plus/
5620 1142 28280 5000 5000
The tutorial uses the CIHP dataset, which is:
- 20 classes
- 28280 Training and 5000 Validation images
I am using the face/head segmentatiion commercial dataset, which is:
- 14 classes
- 5620 Training and 1142 Validation images
But when I switch the datasets (and only switch the datasets. Do NOTHING else), this is what my model's performance looks like:
Epoch 1/50
1404/1404 [==============================] - 1302s 922ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 2/50
1404/1404 [==============================] - 1300s 926ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 3/50
1404/1404 [==============================] - 1301s 927ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 4/50
1404/1404 [==============================] - 1297s 924ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Why am I getting this problem? What am I doing wrong? How can I fix it?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论