语义分割中损失很小,而验证准确性保持一致

发布于 2025-01-10 08:41:47 字数 1048 浏览 7 评论 0原文

我基本上正在完成本教程,但使用不同的数据集: https://keras.io/examples/vision/deeplabv3_plus/ 5620 1142 28280 5000 5000

本教程使用 CIHP 数据集,即:

  • 20 个类别
  • 28280 个训练图像和 5000 个验证图像

我使用的是面部/头部分割商业数据集,即:

  • 14 个类别
  • 5620 个训练图像和 1142 个验证图像

但是当我切换数据集(并且仅切换数据集。不执行其他操作),这我的模型的性能是这样的:

Epoch 1/50
1404/1404 [==============================] - 1302s 922ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 2/50
1404/1404 [==============================] - 1300s 926ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 3/50
1404/1404 [==============================] - 1301s 927ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 4/50
1404/1404 [==============================] - 1297s 924ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956

为什么我会遇到这个问题?我做错了什么?我该如何修复它?

I am basically working through this tutorial but with a different dataset:
https://keras.io/examples/vision/deeplabv3_plus/
5620 1142 28280 5000 5000

The tutorial uses the CIHP dataset, which is:

  • 20 classes
  • 28280 Training and 5000 Validation images

I am using the face/head segmentatiion commercial dataset, which is:

  • 14 classes
  • 5620 Training and 1142 Validation images

But when I switch the datasets (and only switch the datasets. Do NOTHING else), this is what my model's performance looks like:

Epoch 1/50
1404/1404 [==============================] - 1302s 922ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 2/50
1404/1404 [==============================] - 1300s 926ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 3/50
1404/1404 [==============================] - 1301s 927ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956
Epoch 4/50
1404/1404 [==============================] - 1297s 924ms/step - loss: nan - accuracy: 0.5892 - val_loss: nan - val_accuracy: 0.4956

Why am I getting this problem? What am I doing wrong? How can I fix it?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文