您应该如何测试 2 个分类准确度分数的显着性:配对排列测试
我有一个经过训练的分类器在 2 个相关的多类分类任务上进行了测试。由于分类任务的每次试验都是相关的,因此 2 组预测构成配对数据。我想运行配对排列测试来查明两个预测集之间的分类准确性差异是否显着。
因此,我的数据由 2 个预测类别列表组成,其中每个预测都与同一索引的其他测试集中的预测相关。
示例:
actual_classes = [1, 3, 6, 1, 22, 1, 11, 12, 9, 2]
predictions1 = [1, 3, 6, 1, 22, 1, 11, 12, 9 10] # 90% acc.
predictions2 = [1, 3, 7, 10, 22, 1, 7, 12, 2, 10] # 50% acc.
H0:分类准确率没有显着差异。
如何运行配对排列测试来测试分类准确性差异的显着性?
I have a single trained classifier tested on 2 related multiclass classification tasks. As each trial of the classification tasks are related, the 2 sets of predictions constitute paired data. I would like to run a paired permutation test to find out if the difference in classification accuracy between the 2 prediction sets is significant.
So my data consists of 2 lists of predicted classes, where each prediction is related to the prediction in the other test set at the same index.
Example:
actual_classes = [1, 3, 6, 1, 22, 1, 11, 12, 9, 2]
predictions1 = [1, 3, 6, 1, 22, 1, 11, 12, 9 10] # 90% acc.
predictions2 = [1, 3, 7, 10, 22, 1, 7, 12, 2, 10] # 50% acc.
H0: There is no significant difference in classification accuracy.
How do I go about running a paired permutation test to test significance of the difference in classification accuracy?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
我一直在考虑这个问题,我将发布一个提议的解决方案,看看是否有人批准或解释我为什么错了。
如果您有任何想法,请在评论中告诉我。或者更好的是,在您自己的答案中提供您自己的更正版本。谢谢你!
I have been thinking about this and I'm going to post a proposed solution and see if someone approves or explains why I'm wrong.
If you have any thoughts, let me know in the comments. Or better still, provide your own corrected version in your own answer. Thank you!