浮点可以任意精度吗?

发布于 2025-01-09 18:05:17 字数 2097 浏览 4 评论 0原文

只是为了好玩,因为它真的很简单,我编写了一个简短的程序来生成嫁接数字,但由于浮点精度问题,它没有找到一些较大的示例。

def isGrafting(a):
  for i in xrange(1, int(ceil(log10(a))) + 2):
    if a == floor((sqrt(a) * 10**(i-1)) % 10**int(ceil(log10(a)))):
      return 1

a = 0
while(1):
  if (isGrafting(a)):
    print "%d %.15f" % (a, sqrt(a))
  a += 1

此代码至少遗漏了一个已知的嫁接编号。 <代码>9999999998 => 99999.99998999999999949999999994999999999374999999912...乘以10**5后似乎会降低额外的精度。

>>> a = 9999999998
>>> sqrt(a)
99999.99999
>>> a == floor((sqrt(a) * 10**(5)) % 10**int(ceil(log10(a))))
False
>>> floor((sqrt(a) * 10**(5)) % 10**int(ceil(log10(a))))
9999999999.0
>>> print "%.15f" % sqrt(a)
99999.999989999996615
>>> print "%.15f" % (sqrt(a) * 10**5)
9999999999.000000000000000

所以我写了一个简短的C++程序来看看是我的CPU以某种方式截断了浮点数还是python。

#include <cstdio>
#include <cmath>
#include <stdint.h>

int main()
{
  uint64_t a = 9999999998;
  printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e4, sqrt((double)a)*1e5, sqrt((double)a)*1e6);
  a = 999999999998;
  printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e5, sqrt((double)a)*1e6, sqrt((double)a)*1e7);
  a = 99999999999998;
  printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e6, sqrt((double)a)*1e7, sqrt((double)a)*1e8);
  return 0;
}

哪个输出:

9999999998 99999.999989999996615 999999999.899999976158142 9999999999.000000000000000 99999999990.000000000000000
999999999998 999999.999998999992386 99999999999.899993896484375 999999999999.000000000000000 9999999999990.000000000000000
99999999999998 9999999.999999899417162 9999999999999.900390625000000 99999999999999.000000000000000 999999999999990.000000000000000

所以看起来我正在努力挑战浮点精度的限制,并且CPU正在砍掉剩余的位,因为它认为剩余的差异是浮点错误。有没有办法在 Python 下解决这个问题?或者我需要转移到 C 并使用 GMP 之类的吗?

Just for fun and because it was really easy, I've written a short program to generate Grafting numbers, but because of floating point precision issues it's not finding some of the larger examples.

def isGrafting(a):
  for i in xrange(1, int(ceil(log10(a))) + 2):
    if a == floor((sqrt(a) * 10**(i-1)) % 10**int(ceil(log10(a)))):
      return 1

a = 0
while(1):
  if (isGrafting(a)):
    print "%d %.15f" % (a, sqrt(a))
  a += 1

This code misses at least one known Grafting number. 9999999998 => 99999.99998999999999949999999994999999999374999999912... It seems to drop extra precision after multiplying by 10**5.

>>> a = 9999999998
>>> sqrt(a)
99999.99999
>>> a == floor((sqrt(a) * 10**(5)) % 10**int(ceil(log10(a))))
False
>>> floor((sqrt(a) * 10**(5)) % 10**int(ceil(log10(a))))
9999999999.0
>>> print "%.15f" % sqrt(a)
99999.999989999996615
>>> print "%.15f" % (sqrt(a) * 10**5)
9999999999.000000000000000

So I wrote a short C++ program to see if it was my CPU truncating the floating point number or python somehow.

#include <cstdio>
#include <cmath>
#include <stdint.h>

int main()
{
  uint64_t a = 9999999998;
  printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e4, sqrt((double)a)*1e5, sqrt((double)a)*1e6);
  a = 999999999998;
  printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e5, sqrt((double)a)*1e6, sqrt((double)a)*1e7);
  a = 99999999999998;
  printf("%ld %.15f %.15f %.15f %.15f\n", a, sqrt((double)a), sqrt((double)a)*1e6, sqrt((double)a)*1e7, sqrt((double)a)*1e8);
  return 0;
}

Which outputs:

9999999998 99999.999989999996615 999999999.899999976158142 9999999999.000000000000000 99999999990.000000000000000
999999999998 999999.999998999992386 99999999999.899993896484375 999999999999.000000000000000 9999999999990.000000000000000
99999999999998 9999999.999999899417162 9999999999999.900390625000000 99999999999999.000000000000000 999999999999990.000000000000000

So it looks like I'm running up hard against the limits of floating point precision and the CPU is chopping off the remaining bits because it thinks that the remaining difference is floating point error. Is there a way to work around this under Python? Or do I need to move to C and use GMP or something?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(5

梦里泪两行 2025-01-16 18:05:17

在标准库中, decimal 模块可能就是您正在寻找的。另外,我发现 mpmath 非常有帮助。 文档也有很多很好的例子(不幸的是我的办公室计算机没有mpmath 安装;否则我会验证一些示例并发布它们)。

不过,关于 decimal 模块的一个警告。该模块包含几个用于简单数学运算的内置函数(例如 sqrt),但这些函数的结果可能并不总是与 math 或其他模块中的相应函数匹配更高的精度(尽管它们可能更准确)。例如,

from decimal import *
import math

getcontext().prec = 30
num = Decimal(1) / Decimal(7)

print("   math.sqrt: {0}".format(Decimal(math.sqrt(num))))
print("decimal.sqrt: {0}".format(num.sqrt()))

在 Python 3.2.3 中,这会输出前两行

   math.sqrt: 0.37796447300922719758631274089566431939601898193359375
decimal.sqrt: 0.377964473009227227214516536234
actual value: 0.3779644730092272272145165362341800608157513118689214

,如上所述,这并不完全是您所期望的,您可以看到精度越高,结果匹配越少。请注意,在此示例中,decimal 模块确实具有更高的准确性,因为它更接近于 实际值

In the standard library, the decimal module may be what you're looking for. Also, I have found mpmath to be quite helpful. The documentation has many great examples as well (unfortunately my office computer does not have mpmath installed; otherwise I would verify a few examples and post them).

One caveat about the decimal module, though. The module contains several in-built functions for simple mathematical operations (e.g. sqrt), but the results from these functions may not always match the corresponding function in math or other modules at higher precisions (although they may be more accurate). For example,

from decimal import *
import math

getcontext().prec = 30
num = Decimal(1) / Decimal(7)

print("   math.sqrt: {0}".format(Decimal(math.sqrt(num))))
print("decimal.sqrt: {0}".format(num.sqrt()))

In Python 3.2.3, this outputs the first two lines

   math.sqrt: 0.37796447300922719758631274089566431939601898193359375
decimal.sqrt: 0.377964473009227227214516536234
actual value: 0.3779644730092272272145165362341800608157513118689214

which as stated, isn't exactly what you would expect, and you can see that the higher the precision, the less the results match. Note that the decimal module does have more accuracy in this example, since it more closely matches the actual value.

大海や 2025-01-16 18:05:17

对于这个特殊问题,十进制是一个很好的方法,因为它将十进制数字存储为元组!

>>> a = decimal.Decimal(9999999998)
>>> a.as_tuple()
DecimalTuple(sign=0, digits=(9, 9, 9, 9, 9, 9, 9, 9, 9, 8), exponent=0)

由于您正在寻找最自然地用十进制表示的属性,因此使用二进制表示有点愚蠢。您链接到的维基百科页面没有表明在“嫁接数字”开始之前可能会出现多少个“非嫁接数字”,因此这可以让您指定:

>>> def isGrafting(dec, max_offset=5):
...     dec_digits = dec.as_tuple().digits
...     sqrt_digits = dec.sqrt().as_tuple().digits
...     windows = [sqrt_digits[o:o + len(dec_digits)] for o in range(max_offset)]
...     return dec_digits in windows
... 
>>> isGrafting(decimal.Decimal(9999999998))
True
>>> isGrafting(decimal.Decimal(77))
True

我认为 Decimal.sqrt(由于二进制表示和十进制表示之间的转换,至少在这一点上, ) 比 math.sqrt() 的结果更准确。例如,考虑以下情况:

>>> num = decimal.Decimal(1) / decimal.Decimal(7)
>>> decimal.Decimal(math.sqrt(num) ** 2) * 7
Decimal('0.9999999999999997501998194593')
>>> decimal.Decimal(num.sqrt() ** 2) * 7
Decimal('1.000000000000000000000000000')

For this particular problem, decimal is a great way to go, because it stores the decimal digits as tuples!

>>> a = decimal.Decimal(9999999998)
>>> a.as_tuple()
DecimalTuple(sign=0, digits=(9, 9, 9, 9, 9, 9, 9, 9, 9, 8), exponent=0)

Since you're looking for a property that is most naturally expressed in decimal notation, it's a bit silly to use a binary representation. The wikipedia page you linked to didn't indicate how many "non-grafting digits" may appear before the "grafting digits" begin, so this lets you specify:

>>> def isGrafting(dec, max_offset=5):
...     dec_digits = dec.as_tuple().digits
...     sqrt_digits = dec.sqrt().as_tuple().digits
...     windows = [sqrt_digits[o:o + len(dec_digits)] for o in range(max_offset)]
...     return dec_digits in windows
... 
>>> isGrafting(decimal.Decimal(9999999998))
True
>>> isGrafting(decimal.Decimal(77))
True

I think there's a good chance the result of Decimal.sqrt() will be more accurate, at least for this, than the result of math.sqrt() because of the conversion between binary representation and decimal representation. Consider the following, for example:

>>> num = decimal.Decimal(1) / decimal.Decimal(7)
>>> decimal.Decimal(math.sqrt(num) ** 2) * 7
Decimal('0.9999999999999997501998194593')
>>> decimal.Decimal(num.sqrt() ** 2) * 7
Decimal('1.000000000000000000000000000')
一影成城 2025-01-16 18:05:17

您可以尝试使用 Decimal 而不是浮点数。

You can try with Decimal instead of floatingpoint.

长途伴 2025-01-16 18:05:17

Python 没有内置的任意精度浮点数,但有使用 GMP 的第 3 方 Python 包: gmpyPyGMP

Python has no built-in arbitrary-precision floats, but there are 3rd-party Python packages that use GMP: gmpy and PyGMP.

清眉祭 2025-01-16 18:05:17

使用十进制,(这是一个更清晰的示例):

>>> 2.3-2.2
0.09999999999999964
>>> from decimal import Decimal
>>> Decimal('2.3')-Decimal('2.2')
Decimal('0.1')
>>> float(Decimal('2.3')-Decimal('2.2'))
0.1
>>> 

use decimal, (here is a clearer example):

>>> 2.3-2.2
0.09999999999999964
>>> from decimal import Decimal
>>> Decimal('2.3')-Decimal('2.2')
Decimal('0.1')
>>> float(Decimal('2.3')-Decimal('2.2'))
0.1
>>> 
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文