使用 groupby 滚动年初至今的百分比变化
我有一个大数据框。您将在下面找到其摘录:
lst=[['31122020','A',12],['31012021','A',14],['28022021','A',15],['31032021','A',17]]
df2=pd.DataFrame(lst, columns=['Date','FN','AuM'])
我想计算 AuM
列的年初至今 (YTD)。新专栏应该是这样的:
lst=[['31122020','A',12,'NaN'],['31012021','A',14,0.167],['28022021','A',15,0.25],['31032021','A',17,0.417]]
df2=pd.DataFrame(lst, columns=['Date','FN','AuM','AuM_YTD_%Change'])
你知道有什么pandas函数可以达到我的目标吗?
I have got a big data frame. Below you will find an extract of it:
lst=[['31122020','A',12],['31012021','A',14],['28022021','A',15],['31032021','A',17]]
df2=pd.DataFrame(lst, columns=['Date','FN','AuM'])
I would like to calculate the Year to date (YTD) of the column AuM
. The new column should look like this:
lst=[['31122020','A',12,'NaN'],['31012021','A',14,0.167],['28022021','A',15,0.25],['31032021','A',17,0.417]]
df2=pd.DataFrame(lst, columns=['Date','FN','AuM','AuM_YTD_%Change'])
Do you know any pandas function which can reach my goal?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以为一年内的日期创建一个掩码,然后使用
diff
+cumsum
进行更改,使用div
表示变化率:输出:
You can create a mask for dates inside one year, then use
diff
+cumsum
for the changes, anddiv
for the change rates:Output: