逻辑回归和情感分析

发布于 2025-01-09 09:02:11 字数 1099 浏览 1 评论 0原文

我需要有关以下代码的帮助,到处都写着“您的代码在这里”。 任何帮助表示赞赏。 谢谢你!

#使用词典创建两个词典特征。 特征“POSLEX”,其值指示有多少标记属于正向词典。 特征“NEGLEX”,其值指示有多少标记属于否定词典。

 def two_lexicon_features(tokens):
    feats = {'POSLEX': 0, 'NEGLEX': 0}
    # YOUR CODE HERE

 return feats

#如果正向词典中的单词(例如“like”)在文档中出现 N 次(例如 5 次),则为与该值关联的该单词添加正向词典特征“POSLEX_word”(例如 {'POSLEX_like' : 5 }。 类似地,如果否定词典中的单词(例如“dislike”)在文档中出现 N 次(例如 5 次),则为与该值关联的该单词添加否定词典​​特征“NEGLEX_word”(例如 {'NEGLEX_dislike' : 5}

def lexicon_features(tokens):
  feats = {}
  # YOUR CODE HERE
  # Assume the positive and negative lexicons are available in poslex and neglex, respectively.

return feats

#添加一个特征'DOC_LEN',其值为文档长度的自然对数(使用math.log计算对数)

import math
def len_feature(tokens):
   feat = {'DOC_LEN': 'YOUR CODE HERE'}

return feat

#添加一个功能“DEICTIC_COUNT”,用于计算文档中第一人称代词和第二人称代词的数量。

def deictic_feature(tokens):
   pronouns = set(('i', 'my', 'me', 'we', 'us', 'our', 'you', 'your'))
   count = 0
   # YOUR CODE HERE

return {'DEICTIC_COUNT': count}

I need help with the following code everywhere that says "YOUR CODE HERE".
Any help is appreciated.
Thank you!

#Use the lexicons to create two lexicon features.
A feature 'POSLEX' whose value indicates how many tokens belong to the positive lexicon.
A feature 'NEGLEX' whose value indicates how many tokens belong to the negative lexicon.

 def two_lexicon_features(tokens):
    feats = {'POSLEX': 0, 'NEGLEX': 0}
    # YOUR CODE HERE

 return feats

#If a word from the positive lexicon (e.g. 'like') appears N times in the document (e.g. 5 times), add a positive lexicon feature 'POSLEX_word' for that word that is associated that value (e.g. {'POSLEX_like' : 5}.
Similarly, if a word from the negative lexicon (e.g. 'dislike') appears N times in the document (e.g. 5 times), add a negative lexicon feature 'NEGLEX_word' for that word that is associated that value (e.g. {'NEGLEX_dislike' : 5}

def lexicon_features(tokens):
  feats = {}
  # YOUR CODE HERE
  # Assume the positive and negative lexicons are available in poslex and neglex, respectively.

return feats

#Add a feature 'DOC_LEN' whose value is the natural logarithm of the document length (use math.log to compute logarithms)

import math
def len_feature(tokens):
   feat = {'DOC_LEN': 'YOUR CODE HERE'}

return feat

#Add a feature 'DEICTIC_COUNT' that counts the number of 1st and 2nd person pronouns in the document.

def deictic_feature(tokens):
   pronouns = set(('i', 'my', 'me', 'we', 'us', 'our', 'you', 'your'))
   count = 0
   # YOUR CODE HERE

return {'DEICTIC_COUNT': count}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文