maxterms 乘积的分配性质

发布于 2025-01-08 21:40:10 字数 222 浏览 1 评论 0原文

我不确定如何在以下函数上使用分配属性:

F = B'D + A'D + BD

我知道 F = xy + x'z 将变为 (xy + x')(xy + z) 但我不确定如何用三个术语来做到这一点有两个变量。

另外还有一个小问题: 我想知道如何知道最小项是多少,而不必查阅(或记住)最小项表。

例如,我如何知道 xy'z' 是 m4?

I am unsure how to use the Distributive property on the following function:

F = B'D + A'D + BD

I understand that F = xy + x'z would become (xy + x')(xy + z) but I'm not sure how to do this with three terms with two variables.

Also another small question:
I was wondering how to know what number a minterm is without having to consult (or memorise) the table of minterms.

For example how can I tell that xy'z' is m4?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

沙沙粒小 2025-01-15 21:40:10

当您尝试在那里使用分配律时,您所做的是将最小项转换为最大项。这其实和你的第二个问题有很大关系。

要告诉 xy'z' 是 m4,请将函数视为二进制,其中 false 为 0,true 为 1。然后 xy'z' 变为 100,二进制表示十进制 4。这就是 k-map/minterm 表的真正作用给你一个号码。

现在对此进行一个重要的扩展:可能的组合数量是 2^不同变量的数量。如果有 3 个变量,则有 2^3 或 8 种不同的组合。这意味着您有 0-7 之间的最小/最大可能数字。这是最酷的部分:任何不是最小项的东西都是最大项,反之亦然。

因此,如果有变量 x 和 y,并且有表达式 xy',则可以将其视为 10 或 m2。因为数字从 0 到 3 有 2 个变量,所以 m2 意味着 M0、M1 和 M3。因此,xy'=(x+y)(x+y')(x'+y')。

换句话说,在任一方向上执行分配属性的最简单方法是记下您正在处理的最小项或最大项,然后将其切换到另一个。

对于更多信息/不同措辞< /a>.

When you're trying to use the distributive property there, what you're doing is converting minterms to maxterms. This is actually very related to your second question.

To tell that xy'z' is m4, think of function as binary where false is 0 and true is 1. xy'z' then becomes 100, binary for the decimal 4. That's really what a k-map/minterm table is doing for you to give a number.

Now an important extension of this: the number of possible combinations is 2^number of different variables. If you have 3 variables, there are 2^3 or 8 different combinations. That means you have min/maxterm possible numbers from 0-7. Here's the cool part: anything that isn't a minterm is a maxterm, and vice versa.

So, if you have variables x and y, and you have the expression xy', you can see that as 10, or m2. Because the numbers go from 0-3 with 2 variables, m2 implies M0, M1, and M3. Therefore, xy'=(x+y)(x+y')(x'+y').

In other words, the easiest way to do the distributive property in either direction is to note what minterm or maxterm you're dealing with, and just switch it to the other.

For more info/different wording.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文