edmonds karp 最大流算法中缺少一些路径
我会实现Edmond Karp算法,但似乎不正确并且我没有得到正确的流程,请考虑以下图表和从 4 到 8 的流程:
算法运行如下:
首先找到 4→1→8, 然后找到4→5→8 之后 4→1→6→8
我认为第三条路径是错误的,因为通过使用这条路径,我们不能使用来自 6→8 的流(因为它使用了),事实上我们不能使用来自 4→ 的流5→6→8。
事实上,如果我们选择4→5→6→8,然后4→1→3→7→8,然后4→1→3→7→8,我们可以获得更好的流量(40)。
我从 wiki 示例代码实现了算法。我认为我们不能使用任何有效的路径,事实上这种贪婪的选择是错误的。
我错了吗?
代码如下(c#中阈值为0,不影响算法):
public decimal EdmondKarps(decimal[][] capacities/*Capacity matrix*/,
List<int>[] neighbors/*Neighbour lists*/,
int s /*source*/,
int t/*sink*/,
decimal threshold,
out decimal[][] flowMatrix
/*flowMatrix (A matrix giving a legal flowMatrix with the maximum value)*/
)
{
THRESHOLD = threshold;
int n = capacities.Length;
decimal flow = 0m; // (Initial flowMatrix is zero)
flowMatrix = new decimal[n][]; //array(1..n, 1..n) (Residual capacity from u to v is capacities[u,v] - flowMatrix[u,v])
for (int i = 0; i < n; i++)
{
flowMatrix[i] = new decimal[n];
}
while (true)
{
var path = new int[n];
var pathCapacity = BreadthFirstSearch(capacities, neighbors, s, t, flowMatrix, out path);
if (pathCapacity <= threshold)
break;
flow += pathCapacity;
//(Backtrack search, and update flowMatrix)
var v = t;
while (v != s)
{
var u = path[v];
flowMatrix[u][v] = flowMatrix[u][v] + pathCapacity;
flowMatrix[v][u] = flowMatrix[v][u] - pathCapacity;
v = u;
}
}
return flow;
}
private decimal BreadthFirstSearch(decimal[][] capacities, List<int>[] neighbors, int s, int t, decimal[][] flowMatrix, out int[] path)
{
var n = capacities.Length;
path = Enumerable.Range(0, n).Select(x => -1).ToArray();//array(1..n)
path[s] = -2;
var pathFlow = new decimal[n];
pathFlow[s] = Decimal.MaxValue; // INFINT
var Q = new Queue<int>(); // Q is exactly Queue :)
Q.Enqueue(s);
while (Q.Count > 0)
{
var u = Q.Dequeue();
for (int i = 0; i < neighbors[u].Count; i++)
{
var v = neighbors[u][i];
//(If there is available capacity, and v is not seen before in search)
if (capacities[u][v] - flowMatrix[u][v] > THRESHOLD && path[v] == -1)
{
// save path:
path[v] = u;
pathFlow[v] = Math.Min(pathFlow[u], capacities[u][v] - flowMatrix[u][v]);
if (v != t)
Q.Enqueue(v);
else
return pathFlow[t];
}
}
}
return 0;
}
I'd implement Edmond Karp algorithm, but seems it's not correct and I'm not getting correct flow, consider following graph and flow from 4 to 8:
Algorithm runs as follow:
First finds 4→1→8,
Then finds 4→5→8
after that 4→1→6→8
And I think third path is wrong, because by using this path we can't use flow from 6→8 (because it used), and in fact we can't use flow from 4→5→6→8.
In fact if we choose 4→5→6→8, and then 4→1→3→7→8 and then 4→1→3→7→8 we can gain better flow(40).
I Implemented algorithm from wiki sample code. I think we can't use any valid path and in fact this greedy selection is wrong.
Am I wrong?
Code is as below (in c#, threshold is 0, and doesn't affect the algorithm):
public decimal EdmondKarps(decimal[][] capacities/*Capacity matrix*/,
List<int>[] neighbors/*Neighbour lists*/,
int s /*source*/,
int t/*sink*/,
decimal threshold,
out decimal[][] flowMatrix
/*flowMatrix (A matrix giving a legal flowMatrix with the maximum value)*/
)
{
THRESHOLD = threshold;
int n = capacities.Length;
decimal flow = 0m; // (Initial flowMatrix is zero)
flowMatrix = new decimal[n][]; //array(1..n, 1..n) (Residual capacity from u to v is capacities[u,v] - flowMatrix[u,v])
for (int i = 0; i < n; i++)
{
flowMatrix[i] = new decimal[n];
}
while (true)
{
var path = new int[n];
var pathCapacity = BreadthFirstSearch(capacities, neighbors, s, t, flowMatrix, out path);
if (pathCapacity <= threshold)
break;
flow += pathCapacity;
//(Backtrack search, and update flowMatrix)
var v = t;
while (v != s)
{
var u = path[v];
flowMatrix[u][v] = flowMatrix[u][v] + pathCapacity;
flowMatrix[v][u] = flowMatrix[v][u] - pathCapacity;
v = u;
}
}
return flow;
}
private decimal BreadthFirstSearch(decimal[][] capacities, List<int>[] neighbors, int s, int t, decimal[][] flowMatrix, out int[] path)
{
var n = capacities.Length;
path = Enumerable.Range(0, n).Select(x => -1).ToArray();//array(1..n)
path[s] = -2;
var pathFlow = new decimal[n];
pathFlow[s] = Decimal.MaxValue; // INFINT
var Q = new Queue<int>(); // Q is exactly Queue :)
Q.Enqueue(s);
while (Q.Count > 0)
{
var u = Q.Dequeue();
for (int i = 0; i < neighbors[u].Count; i++)
{
var v = neighbors[u][i];
//(If there is available capacity, and v is not seen before in search)
if (capacities[u][v] - flowMatrix[u][v] > THRESHOLD && path[v] == -1)
{
// save path:
path[v] = u;
pathFlow[v] = Math.Min(pathFlow[u], capacities[u][v] - flowMatrix[u][v]);
if (v != t)
Q.Enqueue(v);
else
return pathFlow[t];
}
}
}
return 0;
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
选择路径的方式并不重要。
您必须以与路径容量相反的顺序添加路径的边缘,并按该值减少路径边缘的容量。
事实上,这个解决方案是有效的:
最终最大流量的值是循环中
C
的总和。如果您想查看所创建的最大流量中的边中的流量,您可以在某处保留初始图,边e中的流量将是original_capacity_e - current_capacity_e。
The way to choose paths is not important.
You have to add edges of the path in reverse order with path capacity and reduce capacity of edges of the path by that value.
In fact this solution works:
Finally the value of maximum-flow is sum of
C
s in the loop.If you want to see the flow in edges in the maximum-flow you made, you can retain the initial graph somewhere, the flow in edge e would be original_capacity_e - current_capacity_e.