我看到最大位失败并且错误率没有改变
我是 FANN 的新手,我正在尝试使用 python 绑定来访问它。
ann = libfann.neural_net()
ann.create_sparse_array(3, (12, 8, 1))
ann.set_learning_rate(100)
ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
ann.train_on_file("file.txt", 500, 50, 0.01)
对于 5352 个输入,该文件如下所示:
5352 12 1
29020800.0 384.78 371.8 373.33 377.37 377.3 -4.04 374.201 120.803 51.3301 61.7468 -10.4167
406.35
28088200.0 379.82 360.3 367.86 378.25 378.2 -10.39 374.824 123.364 47.1374 58.8249 -11.6875
409.0
44059900.0 381.8 354.24 374.57 372.5 372.5 2.07 374.466 125.843 42.8831 55.6365 -12.7534
402.55
etc。
但是当我运行这个程序时,它会在 5 秒内完成并打印以下内容:
Max epochs 500. Desired error: 0.0099999998.
Epochs 1. Current error: 2680.8283691406. Bit fail 5352.
Epochs 50. Current error: 2647.2299804688. Bit fail 5352.
Epochs 100. Current error: 2647.2299804688. Bit fail 5352.
Epochs 150. Current error: 2647.2299804688. Bit fail 5352.
Epochs 200. Current error: 2647.2299804688. Bit fail 5352.
Epochs 250. Current error: 2647.2299804688. Bit fail 5352.
Epochs 300. Current error: 2647.2299804688. Bit fail 5352.
Epochs 350. Current error: 2647.2299804688. Bit fail 5352.
Epochs 400. Current error: 2647.2299804688. Bit fail 5352.
Epochs 450. Current error: 2647.2299804688. Bit fail 5352.
Epochs 500. Current error: 2647.2299804688. Bit fail 5352.
有人能给我一个提示,告诉我可能出了什么问题吗?
I am new to using FANN and am trying to access it using the python bindings.
ann = libfann.neural_net()
ann.create_sparse_array(3, (12, 8, 1))
ann.set_learning_rate(100)
ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
ann.train_on_file("file.txt", 500, 50, 0.01)
The file looks like this:
5352 12 1
29020800.0 384.78 371.8 373.33 377.37 377.3 -4.04 374.201 120.803 51.3301 61.7468 -10.4167
406.35
28088200.0 379.82 360.3 367.86 378.25 378.2 -10.39 374.824 123.364 47.1374 58.8249 -11.6875
409.0
44059900.0 381.8 354.24 374.57 372.5 372.5 2.07 374.466 125.843 42.8831 55.6365 -12.7534
402.55
etc for 5352 inputs.
But when I run this, it goes through in under 5 seconds and prints the following:
Max epochs 500. Desired error: 0.0099999998.
Epochs 1. Current error: 2680.8283691406. Bit fail 5352.
Epochs 50. Current error: 2647.2299804688. Bit fail 5352.
Epochs 100. Current error: 2647.2299804688. Bit fail 5352.
Epochs 150. Current error: 2647.2299804688. Bit fail 5352.
Epochs 200. Current error: 2647.2299804688. Bit fail 5352.
Epochs 250. Current error: 2647.2299804688. Bit fail 5352.
Epochs 300. Current error: 2647.2299804688. Bit fail 5352.
Epochs 350. Current error: 2647.2299804688. Bit fail 5352.
Epochs 400. Current error: 2647.2299804688. Bit fail 5352.
Epochs 450. Current error: 2647.2299804688. Bit fail 5352.
Epochs 500. Current error: 2647.2299804688. Bit fail 5352.
Can someone give me a hint on what could be going wrong?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
根据参考手册 http://leenissen.dk/fann/html/files /fann_data-h.html#fann_activationfunc_enum,输出应在 <-1, 1> 之间
你必须扩展你的输出;)
According to Reference Manual http://leenissen.dk/fann/html/files/fann_data-h.html#fann_activationfunc_enum, outputs should be between <-1, 1>
You must scale your outputs ;)