平面上的旋转点
给定一个平面(其法线),并给定位于该平面上的 2 个点 K1、K2。我需要在该平面上将点 K2 绕 K1 旋转给定角度 alpha。如何计算K2的新坐标?
Given a plane (its normal), and given 2 points K1,K2 which lie on that plane. I need to rotate point K2 about K1 by given angle alpha on that plane. How to calculate the new coordinates of K2?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
好吧,不知道你用什么语言编码,一般答案是这样的:
Well, not knowing what language you're coding in, a general answer is something like:
根据定义,旋转是在具有固定枢轴点的轴上进行的。
可以将其视为在笔下旋转一张纸,仅在适合您的情况下更改纸和笔的顺序。
旋转单个轴以创建您想要旋转的轴。
您需要该点距原点的距离,以便通过轴的移动来保持其位置。
您还需要必要的角度来实现新的轴。测量终端侧时保持一致。
接下来,您需要在该轴上有一个枢轴点。这是你的起源素数。
由于它在固定轴上旋转,因此您不再需要担心 z 轴,因为它不能来回滑动。
使用正弦和余弦、距离和旋转角度来查找新坐标。
最后将轴旋转回原始位置,以便获得 (x',y',z')
轴角度、旋转公式和欧拉角。
向初学者推荐最后一个。
Rotation is by definition is on an axis with a fixed pivot point.
Think of it as spinning a piece of paper under a pen change the ordination of the paper and pen only when it suits you.
Rotate the individual axis to create the one you wish to rotate by.
You'll need the distance of the point from the origin to maintain it's location through the shifting of axis.
You will also need the necessary angles to achieve your new axis. Keep things consistent when measuring your terminal side.
Next you'll need a pivot point that is on that axis. This is your origin prime.
Since it's rotating on a fix axis you no longer need to worry about a z-axis because it can't slide back and forth.
Use sine and cosine, distance, and your angle of rotation to find new coordinates.
Finally rotate the axis back to their original position so that you have your (x',y',z')
Axis Angle, Rotation formula, and Euler angles.
Would recommend the last one for beginners.