使用摄像头检测心率

发布于 2025-01-05 11:05:00 字数 323 浏览 1 评论 0原文

我需要与应用程序“即时心率”相同的功能。

基本过程要求用户:

  1. 将食指指尖轻轻放在相机镜头上。
  2. 施加均匀的压力并覆盖整个镜头。
  3. 保持稳定 10 秒并获取心率。

这可以通过打开闪光灯并观察血液流过食指时光线的变化来实现。

如何从视频捕获中获取亮度数据?我应该去哪里寻找这个? 我查看了 AVCaptureDevice 类,但没有找到任何有用的东西。

我还发现了 AVCaptureDeviceSubjectAreaDidChangeNotification,这有用吗?

I need the same functionality as the application Instant Heart Rate.

The basic process requires the user to:

  1. Place the tip of the index finger gently on the camera lens.
  2. Apply even pressure and cover the entire lens.
  3. Hold it steady for 10 seconds and get the heart rate.

This can be accomplished by turning the flash on and watch the light change as the blood moves through the index finger.

How can I get the light level data from the video capture? Where should I look for this?
I looked through the class AVCaptureDevice but didn't find anything useful.

I also found AVCaptureDeviceSubjectAreaDidChangeNotification, would that be useful?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

南七夏 2025-01-12 11:05:00

看看这个..

// switch on the flash in torch mode  
 if([camera isTorchModeSupported:AVCaptureTorchModeOn]) {  
 [camera lockForConfiguration:nil];  
 camera.torchMode=AVCaptureTorchModeOn;  
 [camera unlockForConfiguration];  
 }  

  [session setSessionPreset:AVCaptureSessionPresetLow];

   // Create the AVCapture Session  
   session = [[AVCaptureSession alloc] init];  

  // Get the default camera device  
   AVCaptureDevice* camera = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];  
  if([camera isTorchModeSupported:AVCaptureTorchModeOn]) {  
    [camera lockForConfiguration:nil];  
  camera.torchMode=AVCaptureTorchModeOn;  
    [camera unlockForConfiguration];  
 }  
 // Create a AVCaptureInput with the camera device  
    NSError *error=nil;  
     AVCaptureInput* cameraInput = [[AVCaptureDeviceInput alloc] initWithDevice:camera error:&error];  
   if (cameraInput == nil) {  
    NSLog(@"Error to create camera capture:%@",error);  
  }  

    // Set the output  
    AVCaptureVideoDataOutput* videoOutput = [[AVCaptureVideoDataOutput alloc] init];  

   // create a queue to run the capture on  
  dispatch_queue_t captureQueue=dispatch_queue_create("catpureQueue", NULL);  

   // setup our delegate  
   [videoOutput setSampleBufferDelegate:self queue:captureQueue];  

    // configure the pixel format  
    videoOutput.videoSettings = [NSDictionary dictionaryWithObjectsAndKeys:[NSNumber     numberWithUnsignedInt:kCVPixelFormatType_32BGRA], (id)kCVPixelBufferPixelFormatTypeKey,  
     nil];  
   // cap the framerate  
   videoOutput.minFrameDuration=CMTimeMake(1, 10);  
  // and the size of the frames we want  
  [session setSessionPreset:AVCaptureSessionPresetLow];  

   // Add the input and output  
   [session addInput:cameraInput];  
   [session addOutput:videoOutput];  

   // Start the session  

    [session startRunning];  

   - (void)captureOutput:(AVCaptureOutput *)captureOutput didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection {  



   // this is the image buffer  

  CVImageBufferRef cvimgRef = CMSampleBufferGetImageBuffer(sampleBuffer);  


   // Lock the image buffer  

  CVPixelBufferLockBaseAddress(cvimgRef,0);  


  // access the data  

  int width=CVPixelBufferGetWidth(cvimgRef);  
  int height=CVPixelBufferGetHeight(cvimgRef);  


  // get the raw image bytes  
  uint8_t *buf=(uint8_t *) CVPixelBufferGetBaseAddress(cvimgRef);  
  size_t bprow=CVPixelBufferGetBytesPerRow(cvimgRef);  


// get the average red green and blue values from the image  

 float r=0,g=0,b=0;  
 for(int y=0; y<height; y++) {  
 for(int x=0; x<width*4; x+=4) {  
  b+=buf[x];  
  g+=buf[x+1];  
  r+=buf[x+2];  
 }  
 buf+=bprow;  
 }  
  r/=255*(float) (width*height);  
  g/=255*(float) (width*height);  
  b/=255*(float) (width*height);  

  NSLog(@"%f,%f,%f", r, g, b);  
  }  

示例代码此处

Check out this..

// switch on the flash in torch mode  
 if([camera isTorchModeSupported:AVCaptureTorchModeOn]) {  
 [camera lockForConfiguration:nil];  
 camera.torchMode=AVCaptureTorchModeOn;  
 [camera unlockForConfiguration];  
 }  

  [session setSessionPreset:AVCaptureSessionPresetLow];

   // Create the AVCapture Session  
   session = [[AVCaptureSession alloc] init];  

  // Get the default camera device  
   AVCaptureDevice* camera = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];  
  if([camera isTorchModeSupported:AVCaptureTorchModeOn]) {  
    [camera lockForConfiguration:nil];  
  camera.torchMode=AVCaptureTorchModeOn;  
    [camera unlockForConfiguration];  
 }  
 // Create a AVCaptureInput with the camera device  
    NSError *error=nil;  
     AVCaptureInput* cameraInput = [[AVCaptureDeviceInput alloc] initWithDevice:camera error:&error];  
   if (cameraInput == nil) {  
    NSLog(@"Error to create camera capture:%@",error);  
  }  

    // Set the output  
    AVCaptureVideoDataOutput* videoOutput = [[AVCaptureVideoDataOutput alloc] init];  

   // create a queue to run the capture on  
  dispatch_queue_t captureQueue=dispatch_queue_create("catpureQueue", NULL);  

   // setup our delegate  
   [videoOutput setSampleBufferDelegate:self queue:captureQueue];  

    // configure the pixel format  
    videoOutput.videoSettings = [NSDictionary dictionaryWithObjectsAndKeys:[NSNumber     numberWithUnsignedInt:kCVPixelFormatType_32BGRA], (id)kCVPixelBufferPixelFormatTypeKey,  
     nil];  
   // cap the framerate  
   videoOutput.minFrameDuration=CMTimeMake(1, 10);  
  // and the size of the frames we want  
  [session setSessionPreset:AVCaptureSessionPresetLow];  

   // Add the input and output  
   [session addInput:cameraInput];  
   [session addOutput:videoOutput];  

   // Start the session  

    [session startRunning];  

   - (void)captureOutput:(AVCaptureOutput *)captureOutput didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection *)connection {  



   // this is the image buffer  

  CVImageBufferRef cvimgRef = CMSampleBufferGetImageBuffer(sampleBuffer);  


   // Lock the image buffer  

  CVPixelBufferLockBaseAddress(cvimgRef,0);  


  // access the data  

  int width=CVPixelBufferGetWidth(cvimgRef);  
  int height=CVPixelBufferGetHeight(cvimgRef);  


  // get the raw image bytes  
  uint8_t *buf=(uint8_t *) CVPixelBufferGetBaseAddress(cvimgRef);  
  size_t bprow=CVPixelBufferGetBytesPerRow(cvimgRef);  


// get the average red green and blue values from the image  

 float r=0,g=0,b=0;  
 for(int y=0; y<height; y++) {  
 for(int x=0; x<width*4; x+=4) {  
  b+=buf[x];  
  g+=buf[x+1];  
  r+=buf[x+2];  
 }  
 buf+=bprow;  
 }  
  r/=255*(float) (width*height);  
  g/=255*(float) (width*height);  
  b/=255*(float) (width*height);  

  NSLog(@"%f,%f,%f", r, g, b);  
  }  

Sample Code Here

风柔一江水 2025-01-12 11:05:00

其实很简单,你必须分析捕获图像的像素值。一种简单的算法是:选择图像中心的区域,转换为灰度,获取每个图像的像素中值,最终得到一个 2D 函数,并在此函数上计算与最小值之间的距离或最大值并解决问题。

如果您查看 5 秒内采集图像的直方图,您会注意到灰度分布的变化。如果您想要更稳健的计算,请分析直方图。

In fact can be simple, you have to analyze the pixel values of the captured image. One simple algorithm would be: select and area in the center of the image, convert to gray scale, get the median value of the pixel for each image and you will end up with a 2D function and on this function calculate the distance between to minimums or maximum and problem solved.

If you have a look at the histogram of the acquired images over a period of 5 seconds, you will notice the changes of the gray level distribution. If you want a more robust calculation analyze the histogram.

寂寞笑我太脆弱 2025-01-12 11:05:00

附带说明一下,您可能对这篇研究论文感兴趣。这种方法甚至不需要将手指(或任何东西)直接放在镜头上。

As a side note, you may be interested in this research paper. This method does not even require a finger (or anything) directly on the lens.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文