使用 PIL 将 RGBA PNG 转换为 RGB

发布于 2025-01-03 14:26:16 字数 5036 浏览 1 评论 0 原文

我正在使用 PIL 将通过 Django 上传的透明 PNG 图像转换为 JPG 文件。输出看起来损坏了。

源文件

透明源文件

代码

Image.open(object.logo.path).save('/tmp/output.jpg', 'JPEG')

Image.open(object.logo.path).convert('RGB').save('/tmp/output.png')

结果

两种方式,生成的图像如下所示:

结果文件

有办法解决这个问题吗?我想要白色背景,以前是透明背景。


解决方案

感谢出色的答案,我提出了以下函数集合:

import Image
import numpy as np


def alpha_to_color(image, color=(255, 255, 255)):
    """Set all fully transparent pixels of an RGBA image to the specified color.
    This is a very simple solution that might leave over some ugly edges, due
    to semi-transparent areas. You should use alpha_composite_with color instead.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    x = np.array(image)
    r, g, b, a = np.rollaxis(x, axis=-1)
    r[a == 0] = color[0]
    g[a == 0] = color[1]
    b[a == 0] = color[2] 
    x = np.dstack([r, g, b, a])
    return Image.fromarray(x, 'RGBA')


def alpha_composite(front, back):
    """Alpha composite two RGBA images.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    front -- PIL RGBA Image object
    back -- PIL RGBA Image object

    """
    front = np.asarray(front)
    back = np.asarray(back)
    result = np.empty(front.shape, dtype='float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    falpha = front[alpha] / 255.0
    balpha = back[alpha] / 255.0
    result[alpha] = falpha + balpha * (1 - falpha)
    old_setting = np.seterr(invalid='ignore')
    result[rgb] = (front[rgb] * falpha + back[rgb] * balpha * (1 - falpha)) / result[alpha]
    np.seterr(**old_setting)
    result[alpha] *= 255
    np.clip(result, 0, 255)
    # astype('uint8') maps np.nan and np.inf to 0
    result = result.astype('uint8')
    result = Image.fromarray(result, 'RGBA')
    return result


def alpha_composite_with_color(image, color=(255, 255, 255)):
    """Alpha composite an RGBA image with a single color image of the
    specified color and the same size as the original image.

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    back = Image.new('RGBA', size=image.size, color=color + (255,))
    return alpha_composite(image, back)


def pure_pil_alpha_to_color_v1(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    NOTE: This version is much slower than the
    alpha_composite_with_color solution. Use it only if
    numpy is not available.

    Source: http://stackoverflow.com/a/9168169/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    def blend_value(back, front, a):
        return (front * a + back * (255 - a)) / 255

    def blend_rgba(back, front):
        result = [blend_value(back[i], front[i], front[3]) for i in (0, 1, 2)]
        return tuple(result + [255])

    im = image.copy()  # don't edit the reference directly
    p = im.load()  # load pixel array
    for y in range(im.size[1]):
        for x in range(im.size[0]):
            p[x, y] = blend_rgba(color + (255,), p[x, y])

    return im

def pure_pil_alpha_to_color_v2(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    Simpler, faster version than the solutions above.

    Source: http://stackoverflow.com/a/9459208/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    image.load()  # needed for split()
    background = Image.new('RGB', image.size, color)
    background.paste(image, mask=image.split()[3])  # 3 is the alpha channel
    return background

性能

简单的非合成 alpha_to_color 函数是最快的解决方案,但留下了丑陋的边框,因为它不处理半透明地区。

纯 PIL 和 numpy 合成解决方案都给出了很好的结果,但 alpha_composite_with_colorpure_pil_alpha_to_color (79.6 毫秒) 快得多 (8.93 毫秒)。 如果 numpy 在您的系统上可用,那就可以了。(更新:新的纯 PIL 版本是所有提到的解决方案中最快的。)

$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_to_color(i)"
10 loops, best of 3: 4.67 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_composite_with_color(i)"
10 loops, best of 3: 8.93 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color(i)"
10 loops, best of 3: 79.6 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color_v2(i)"
10 loops, best of 3: 1.1 msec per loop

I'm using PIL to convert a transparent PNG image uploaded with Django to a JPG file. The output looks broken.

Source file

transparent source file

Code

Image.open(object.logo.path).save('/tmp/output.jpg', 'JPEG')

or

Image.open(object.logo.path).convert('RGB').save('/tmp/output.png')

Result

Both ways, the resulting image looks like this:

resulting file

Is there a way to fix this? I'd like to have white background where the transparent background used to be.


Solution

Thanks to the great answers, I've come up with the following function collection:

import Image
import numpy as np


def alpha_to_color(image, color=(255, 255, 255)):
    """Set all fully transparent pixels of an RGBA image to the specified color.
    This is a very simple solution that might leave over some ugly edges, due
    to semi-transparent areas. You should use alpha_composite_with color instead.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    x = np.array(image)
    r, g, b, a = np.rollaxis(x, axis=-1)
    r[a == 0] = color[0]
    g[a == 0] = color[1]
    b[a == 0] = color[2] 
    x = np.dstack([r, g, b, a])
    return Image.fromarray(x, 'RGBA')


def alpha_composite(front, back):
    """Alpha composite two RGBA images.

    Source: http://stackoverflow.com/a/9166671/284318

    Keyword Arguments:
    front -- PIL RGBA Image object
    back -- PIL RGBA Image object

    """
    front = np.asarray(front)
    back = np.asarray(back)
    result = np.empty(front.shape, dtype='float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    falpha = front[alpha] / 255.0
    balpha = back[alpha] / 255.0
    result[alpha] = falpha + balpha * (1 - falpha)
    old_setting = np.seterr(invalid='ignore')
    result[rgb] = (front[rgb] * falpha + back[rgb] * balpha * (1 - falpha)) / result[alpha]
    np.seterr(**old_setting)
    result[alpha] *= 255
    np.clip(result, 0, 255)
    # astype('uint8') maps np.nan and np.inf to 0
    result = result.astype('uint8')
    result = Image.fromarray(result, 'RGBA')
    return result


def alpha_composite_with_color(image, color=(255, 255, 255)):
    """Alpha composite an RGBA image with a single color image of the
    specified color and the same size as the original image.

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    back = Image.new('RGBA', size=image.size, color=color + (255,))
    return alpha_composite(image, back)


def pure_pil_alpha_to_color_v1(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    NOTE: This version is much slower than the
    alpha_composite_with_color solution. Use it only if
    numpy is not available.

    Source: http://stackoverflow.com/a/9168169/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """ 
    def blend_value(back, front, a):
        return (front * a + back * (255 - a)) / 255

    def blend_rgba(back, front):
        result = [blend_value(back[i], front[i], front[3]) for i in (0, 1, 2)]
        return tuple(result + [255])

    im = image.copy()  # don't edit the reference directly
    p = im.load()  # load pixel array
    for y in range(im.size[1]):
        for x in range(im.size[0]):
            p[x, y] = blend_rgba(color + (255,), p[x, y])

    return im

def pure_pil_alpha_to_color_v2(image, color=(255, 255, 255)):
    """Alpha composite an RGBA Image with a specified color.

    Simpler, faster version than the solutions above.

    Source: http://stackoverflow.com/a/9459208/284318

    Keyword Arguments:
    image -- PIL RGBA Image object
    color -- Tuple r, g, b (default 255, 255, 255)

    """
    image.load()  # needed for split()
    background = Image.new('RGB', image.size, color)
    background.paste(image, mask=image.split()[3])  # 3 is the alpha channel
    return background

Performance

The simple non-compositing alpha_to_color function is the fastest solution, but leaves behind ugly borders because it does not handle semi transparent areas.

Both the pure PIL and the numpy compositing solutions give great results, but alpha_composite_with_color is much faster (8.93 msec) than pure_pil_alpha_to_color (79.6 msec). If numpy is available on your system, that's the way to go. (Update: The new pure PIL version is the fastest of all mentioned solutions.)

$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_to_color(i)"
10 loops, best of 3: 4.67 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.alpha_composite_with_color(i)"
10 loops, best of 3: 8.93 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color(i)"
10 loops, best of 3: 79.6 msec per loop
$ python -m timeit "import Image; from apps.front import utils; i = Image.open(u'logo.png'); i2 = utils.pure_pil_alpha_to_color_v2(i)"
10 loops, best of 3: 1.1 msec per loop

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(9

探春 2025-01-10 14:26:16

这是一个更简单的版本 - 不确定它的性能如何。很大程度上基于我在构建 RGBA -> 时发现的一些 django 片段JPG + BG 支持 sorl 缩略图。

from PIL import Image

png = Image.open(object.logo.path)
png.load() # required for png.split()

background = Image.new("RGB", png.size, (255, 255, 255))
background.paste(png, mask=png.split()[3]) # 3 is the alpha channel

background.save('foo.jpg', 'JPEG', quality=80)

结果@80%

在此处输入图像描述

结果@50%
在此处输入图像描述

Here's a version that's much simpler - not sure how performant it is. Heavily based on some django snippet I found while building RGBA -> JPG + BG support for sorl thumbnails.

from PIL import Image

png = Image.open(object.logo.path)
png.load() # required for png.split()

background = Image.new("RGB", png.size, (255, 255, 255))
background.paste(png, mask=png.split()[3]) # 3 is the alpha channel

background.save('foo.jpg', 'JPEG', quality=80)

Result @80%

enter image description here

Result @ 50%
enter image description here

吃颗糖壮壮胆 2025-01-10 14:26:16

通过使用 Image.alpha_composite,Yuji 'Tomita' Tomita 的解决方案变得更简单。如果 png 没有 Alpha 通道,此代码可以避免元组索引超出范围错误。

from PIL import Image

png = Image.open(img_path).convert('RGBA')
background = Image.new('RGBA', png.size, (255, 255, 255))

alpha_composite = Image.alpha_composite(background, png)
alpha_composite.save('foo.jpg', 'JPEG', quality=80)

By using Image.alpha_composite, the solution by Yuji 'Tomita' Tomita become simpler. This code can avoid a tuple index out of range error if png has no alpha channel.

from PIL import Image

png = Image.open(img_path).convert('RGBA')
background = Image.new('RGBA', png.size, (255, 255, 255))

alpha_composite = Image.alpha_composite(background, png)
alpha_composite.save('foo.jpg', 'JPEG', quality=80)
贩梦商人 2025-01-10 14:26:16

透明部分大多具有 RGBA 值(0,0,0,0)。由于JPG没有透明度,因此jpeg值设置为(0,0,0),即黑色。

圆形图标周围有一些具有非零 RGB 值的像素,其中 A = 0。因此它们在 PNG 中看起来是透明的,但在 JPG 中看起来颜色很有趣。

您可以使用 numpy 将 A == 0 处的所有像素设置为 R = G = B = 255,如下所示:

import Image
import numpy as np

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
x = np.array(img)
r, g, b, a = np.rollaxis(x, axis = -1)
r[a == 0] = 255
g[a == 0] = 255
b[a == 0] = 255
x = np.dstack([r, g, b, a])
img = Image.fromarray(x, 'RGBA')
img.save('/tmp/out.jpg')

在此处输入图像描述


请注意,徽标还有一些半透明像素,用于平滑文字和图标周围的边缘。保存为 jpeg 会忽略半透明,使生成的 jpeg 看起来相当锯齿状。

使用 imagemagick 的 convert 命令可以得到更好的质量结果:

convert logo.png -background white -flatten /tmp/out.jpg

">


在此处输入图像描述 使用 numpy 进行更好的质量混合,您可以使用 <a href=alpha 合成:

import Image
import numpy as np

def alpha_composite(src, dst):
    '''
    Return the alpha composite of src and dst.

    Parameters:
    src -- PIL RGBA Image object
    dst -- PIL RGBA Image object

    The algorithm comes from http://en.wikipedia.org/wiki/Alpha_compositing
    '''
    # http://stackoverflow.com/a/3375291/190597
    # http://stackoverflow.com/a/9166671/190597
    src = np.asarray(src)
    dst = np.asarray(dst)
    out = np.empty(src.shape, dtype = 'float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    src_a = src[alpha]/255.0
    dst_a = dst[alpha]/255.0
    out[alpha] = src_a+dst_a*(1-src_a)
    old_setting = np.seterr(invalid = 'ignore')
    out[rgb] = (src[rgb]*src_a + dst[rgb]*dst_a*(1-src_a))/out[alpha]
    np.seterr(**old_setting)    
    out[alpha] *= 255
    np.clip(out,0,255)
    # astype('uint8') maps np.nan (and np.inf) to 0
    out = out.astype('uint8')
    out = Image.fromarray(out, 'RGBA')
    return out            

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
white = Image.new('RGBA', size = img.size, color = (255, 255, 255, 255))
img = alpha_composite(img, white)
img.save('/tmp/out.jpg')

在此处输入图像描述

The transparent parts mostly have RGBA value (0,0,0,0). Since the JPG has no transparency, the jpeg value is set to (0,0,0), which is black.

Around the circular icon, there are pixels with nonzero RGB values where A = 0. So they look transparent in the PNG, but funny-colored in the JPG.

You can set all pixels where A == 0 to have R = G = B = 255 using numpy like this:

import Image
import numpy as np

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
x = np.array(img)
r, g, b, a = np.rollaxis(x, axis = -1)
r[a == 0] = 255
g[a == 0] = 255
b[a == 0] = 255
x = np.dstack([r, g, b, a])
img = Image.fromarray(x, 'RGBA')
img.save('/tmp/out.jpg')

enter image description here


Note that the logo also has some semi-transparent pixels used to smooth the edges around the words and icon. Saving to jpeg ignores the semi-transparency, making the resultant jpeg look quite jagged.

A better quality result could be made using imagemagick's convert command:

convert logo.png -background white -flatten /tmp/out.jpg

enter image description here


To make a nicer quality blend using numpy, you could use alpha compositing:

import Image
import numpy as np

def alpha_composite(src, dst):
    '''
    Return the alpha composite of src and dst.

    Parameters:
    src -- PIL RGBA Image object
    dst -- PIL RGBA Image object

    The algorithm comes from http://en.wikipedia.org/wiki/Alpha_compositing
    '''
    # http://stackoverflow.com/a/3375291/190597
    # http://stackoverflow.com/a/9166671/190597
    src = np.asarray(src)
    dst = np.asarray(dst)
    out = np.empty(src.shape, dtype = 'float')
    alpha = np.index_exp[:, :, 3:]
    rgb = np.index_exp[:, :, :3]
    src_a = src[alpha]/255.0
    dst_a = dst[alpha]/255.0
    out[alpha] = src_a+dst_a*(1-src_a)
    old_setting = np.seterr(invalid = 'ignore')
    out[rgb] = (src[rgb]*src_a + dst[rgb]*dst_a*(1-src_a))/out[alpha]
    np.seterr(**old_setting)    
    out[alpha] *= 255
    np.clip(out,0,255)
    # astype('uint8') maps np.nan (and np.inf) to 0
    out = out.astype('uint8')
    out = Image.fromarray(out, 'RGBA')
    return out            

FNAME = 'logo.png'
img = Image.open(FNAME).convert('RGBA')
white = Image.new('RGBA', size = img.size, color = (255, 255, 255, 255))
img = alpha_composite(img, white)
img.save('/tmp/out.jpg')

enter image description here

澉约 2025-01-10 14:26:16

这是纯 PIL 的解决方案。

def blend_value(under, over, a):
    return (over*a + under*(255-a)) / 255

def blend_rgba(under, over):
    return tuple([blend_value(under[i], over[i], over[3]) for i in (0,1,2)] + [255])

white = (255, 255, 255, 255)

im = Image.open(object.logo.path)
p = im.load()
for y in range(im.size[1]):
    for x in range(im.size[0]):
        p[x,y] = blend_rgba(white, p[x,y])
im.save('/tmp/output.png')

Here's a solution in pure PIL.

def blend_value(under, over, a):
    return (over*a + under*(255-a)) / 255

def blend_rgba(under, over):
    return tuple([blend_value(under[i], over[i], over[3]) for i in (0,1,2)] + [255])

white = (255, 255, 255, 255)

im = Image.open(object.logo.path)
p = im.load()
for y in range(im.size[1]):
    for x in range(im.size[0]):
        p[x,y] = blend_rgba(white, p[x,y])
im.save('/tmp/output.png')
苦妄 2025-01-10 14:26:16

它没有坏。它完全按照你的指示去做;这些像素是黑色且完全透明。您将需要迭代所有像素并将完全透明的像素转换为白色。

It's not broken. It's doing exactly what you told it to; those pixels are black with full transparency. You will need to iterate across all pixels and convert ones with full transparency to white.

英雄似剑 2025-01-10 14:26:16
import numpy as np
import PIL

def convert_image(image_file):
    image = Image.open(image_file) # this could be a 4D array PNG (RGBA)
    original_width, original_height = image.size

    np_image = np.array(image)
    new_image = np.zeros((np_image.shape[0], np_image.shape[1], 3)) 
    # create 3D array

    for each_channel in range(3):
        new_image[:,:,each_channel] = np_image[:,:,each_channel]  
        # only copy first 3 channels.

    # flushing
    np_image = []
    return new_image
import numpy as np
import PIL

def convert_image(image_file):
    image = Image.open(image_file) # this could be a 4D array PNG (RGBA)
    original_width, original_height = image.size

    np_image = np.array(image)
    new_image = np.zeros((np_image.shape[0], np_image.shape[1], 3)) 
    # create 3D array

    for each_channel in range(3):
        new_image[:,:,each_channel] = np_image[:,:,each_channel]  
        # only copy first 3 channels.

    # flushing
    np_image = []
    return new_image
千秋岁 2025-01-10 14:26:16

已经给出了最好的答案:

from PIL import Image
img = Image.open("image.png")
bg = Image.new("RGBA",img.size,(255,255,255))
img = Image.alpha_composite(bg,img) # puts our image on top of white background
img.convert("RGB").save("image_rgb.png")

但在看到这些解决方案之前,我自己是这样做的。我分享它只是因为它是最容易理解其工作原理的。 (每个像素如何混合)

from PIL import Image
import numpy

data = numpy.array(Image.open("image.png"))
h,w = data.shape[:2]

def lerp(a,b,f): return [round(a[i]+(b[i]-a[i])*f) for i in (0,1,2)]

for x in range(w):
    for y in range(h):
        r,g,b,a = data[y][x]
        r,g,b = lerp((255,255,255),(r,g,b),a/255) # blend ontop of white based on alpha amount
        data[y][x] = (r,g,b,255)

Image.fromarray(data).convert("RGB").save("image_rgb.png")

我们所做的就是在白色(alpha = 0)和现有像素之间进行插值。 (alpha=255)

这两种解决方案创建的图像与您使用“画图”重新保存图像时获得的图像完全相同。 (您可以使用 (data1==data2).all() 进行检查)lerp() 函数中需要 round() 来准确地说。我将像素保存到浮点数组中,以查看与重新保存的图像中的像素相比得到的结果,并了解像素应如何舍入。 (即 180 vs 180.3 和 214 vs 213.7)四舍五入到最接近的值是有意义的。

现在我只需要知道如何准确地调整 Paint 的大小。

The best answer has been given already:

from PIL import Image
img = Image.open("image.png")
bg = Image.new("RGBA",img.size,(255,255,255))
img = Image.alpha_composite(bg,img) # puts our image on top of white background
img.convert("RGB").save("image_rgb.png")

But here's how i did it myself before seeing these solutions. I'm sharing it just since it's the simplest to understand how it works. (how each pixel is blended)

from PIL import Image
import numpy

data = numpy.array(Image.open("image.png"))
h,w = data.shape[:2]

def lerp(a,b,f): return [round(a[i]+(b[i]-a[i])*f) for i in (0,1,2)]

for x in range(w):
    for y in range(h):
        r,g,b,a = data[y][x]
        r,g,b = lerp((255,255,255),(r,g,b),a/255) # blend ontop of white based on alpha amount
        data[y][x] = (r,g,b,255)

Image.fromarray(data).convert("RGB").save("image_rgb.png")

All we're doing is interpolating between white (alpha=0) and the existing pixel. (alpha=255)

Both solutions create the exact same image you'd get if you re-saved an image with Paint. (you can check with (data1==data2).all()) The round() is needed in the lerp() function to be exact. I saved the pixels to a float array to see what we get compared to the pixels in a re-saved image and saw how pixels should be rounded. (i.e. 180 vs 180.3 and 214 vs 213.7) And it makes sense to round to be what it's nearest to.

Now i just need to know how to resize exactly how Paint resizes.

想挽留 2025-01-10 14:26:16
from PIL import Image
 
def fig2img ( fig ):
    """
    @brief Convert a Matplotlib figure to a PIL Image in RGBA format and return it
    @param fig a matplotlib figure
    @return a Python Imaging Library ( PIL ) image
    """
    # put the figure pixmap into a numpy array
    buf = fig2data ( fig )
    w, h, d = buf.shape
    return Image.frombytes( "RGBA", ( w ,h ), buf.tostring( ) )

def fig2data ( fig ):
    """
    @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
    @param fig a matplotlib figure
    @return a numpy 3D array of RGBA values
    """
    # draw the renderer
    fig.canvas.draw ( )
 
    # Get the RGBA buffer from the figure
    w,h = fig.canvas.get_width_height()
    buf = np.fromstring ( fig.canvas.tostring_argb(), dtype=np.uint8 )
    buf.shape = ( w, h, 4 )
 
    # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
    buf = np.roll ( buf, 3, axis = 2 )
    return buf

def rgba2rgb(img, c=(0, 0, 0), path='foo.jpg', is_already_saved=False, if_load=True):
    if not is_already_saved:
        background = Image.new("RGB", img.size, c)
        background.paste(img, mask=img.split()[3]) # 3 is the alpha channel

        background.save(path, 'JPEG', quality=100)   
        is_already_saved = True
    if if_load:
        if is_already_saved:
            im = Image.open(path)
            return np.array(im)
        else:
            raise ValueError('No image to load.')
from PIL import Image
 
def fig2img ( fig ):
    """
    @brief Convert a Matplotlib figure to a PIL Image in RGBA format and return it
    @param fig a matplotlib figure
    @return a Python Imaging Library ( PIL ) image
    """
    # put the figure pixmap into a numpy array
    buf = fig2data ( fig )
    w, h, d = buf.shape
    return Image.frombytes( "RGBA", ( w ,h ), buf.tostring( ) )

def fig2data ( fig ):
    """
    @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
    @param fig a matplotlib figure
    @return a numpy 3D array of RGBA values
    """
    # draw the renderer
    fig.canvas.draw ( )
 
    # Get the RGBA buffer from the figure
    w,h = fig.canvas.get_width_height()
    buf = np.fromstring ( fig.canvas.tostring_argb(), dtype=np.uint8 )
    buf.shape = ( w, h, 4 )
 
    # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
    buf = np.roll ( buf, 3, axis = 2 )
    return buf

def rgba2rgb(img, c=(0, 0, 0), path='foo.jpg', is_already_saved=False, if_load=True):
    if not is_already_saved:
        background = Image.new("RGB", img.size, c)
        background.paste(img, mask=img.split()[3]) # 3 is the alpha channel

        background.save(path, 'JPEG', quality=100)   
        is_already_saved = True
    if if_load:
        if is_already_saved:
            im = Image.open(path)
            return np.array(im)
        else:
            raise ValueError('No image to load.')
囍孤女 2025-01-10 14:26:16

基于上面的示例:

它接收 RGBA 图像并返回将 alpha 通道转换为白色的 RGB 图像。

from PIL import Image

def imageAlphaToWhite(image):
    background = Image.new("RGBA", image.size, "WHITE")
    alpha_composite_img = Image.alpha_composite(background, image)
    rgb_img = alpha_composite_img.convert("RGB")
    return rgb_img 

Based on above examples:

It takes in an RGBA image and returns an RGB image with alpha channel converted to white color.

from PIL import Image

def imageAlphaToWhite(image):
    background = Image.new("RGBA", image.size, "WHITE")
    alpha_composite_img = Image.alpha_composite(background, image)
    rgb_img = alpha_composite_img.convert("RGB")
    return rgb_img 
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文