添加置信区间以从 R 中的模拟数据绘图

发布于 2025-01-03 10:43:03 字数 2333 浏览 0 评论 0原文

我创建了一个基于似然函数和模拟的概率模拟,所有这些都可以使用下面的代码进行复制。

这是似然函数:

probit.ll <- function(par,ytilde,x) {
   a <- par[1] 
   b <- par[2]
 return(  -sum( pnorm(ytilde*(a + b*x),log=TRUE) ))
}

这是进行估计的函数:

my.probit <- function(y,x) {
# use OLS to get start values
par <- lm(y~x)$coefficients
ytilde <- 2*y-1
# Run optim 
res <- optim(par,probit.ll,hessian=TRUE,ytilde=ytilde,x=x)
# Return point estimates and SE based on the inverse of Hessian
names(res$par) <- c('a','b')
se=sqrt(diag(solve(res$hessian)))
names(se) <- c('a','b')
return(list(par=res$par,se=se,cov=solve(res$hessian)))
}

这是生成模拟模型的函数:

probit.data <- function(N=100,a=1,b=1) {
x <- rnorm(N)
y.star <- a + b*x + rnorm(N)
y <- (y.star > 0)
return( as.data.frame(cbind(y,x,y.star)) )
}

模拟 n 大小等于 100:

probit.data100 <- function(N=100,a=2,b=1) {
x <- rnorm(N)
y.star <- a + b*x + rnorm(N)
y <- (y.star > 0)
return( as.data.frame(cbind(y,x,y.star)) )
}

#predicted value
se.probit.phat100 <- function(x, par, V) {
z <- par[1] + par[2] * x
# Derivative of q w.r.t. alpha and beta 
J <- c( dnorm(z), dnorm(z)*par[2] )
return( sqrt(t(J) %*% V %*% J)  )
}

dat100 <- probit.data100()
res100 <- my.probit(dat100$y,dat100$x)
res100

下面的函数将基于非参数引导方法计算置信区间(注意正在使用的示例函数):

N <- dim(probit.data(N=100, a=1, b=1))[1]
npb.par <- matrix(NA,100,2)
colnames(npb.par) <- c("alpha","beta")
npb.eystar <- matrix(NA,100,N)
for (t in 1:100) {
thisdta <- probit.data(N=100, a=1, b=1)[sample(1:N,N,replace=TRUE),]
npb.par[t,] <- my.probit(thisdta$y,thisdta$x)$par
}

下面的这个函数只是清理引导输出,置信区间是我想要绘制的:

processres <- function(simres) {
z <- t(apply(simres,2,function(x) { c(mean(x),median(x),sd(x),quantile(x,c(0.05,0.95)))     } ))
rownames(z) <- colnames(simres)
colnames(z) <- c("mean","median","sd","5%","95%")
z
}

processres(npb.par)

我想绘制一个像这样的图表(下面的),但添加置信区间基于processres函数 多于。如何将这些置信区间添加到图中?

x <- seq(-5,5,length=100)
plot(x, pnorm(1 - 0.5*x), ty='l', lwd=2, bty='n', xlab='x', ylab="Pr(y=1)")
rug(dat100$x)

我也愿意接受不同的绘图代码和/或包。我只想要一个基于此模拟的图表,并添加了置信区间。

谢谢!

I've created a probit simulation based on a likelihood function and simulation, all of which can be replicated with the code below.

This is the likelihood function:

probit.ll <- function(par,ytilde,x) {
   a <- par[1] 
   b <- par[2]
 return(  -sum( pnorm(ytilde*(a + b*x),log=TRUE) ))
}

This is the function to do the estimates:

my.probit <- function(y,x) {
# use OLS to get start values
par <- lm(y~x)$coefficients
ytilde <- 2*y-1
# Run optim 
res <- optim(par,probit.ll,hessian=TRUE,ytilde=ytilde,x=x)
# Return point estimates and SE based on the inverse of Hessian
names(res$par) <- c('a','b')
se=sqrt(diag(solve(res$hessian)))
names(se) <- c('a','b')
return(list(par=res$par,se=se,cov=solve(res$hessian)))
}

And this is the function to generate the simulated model:

probit.data <- function(N=100,a=1,b=1) {
x <- rnorm(N)
y.star <- a + b*x + rnorm(N)
y <- (y.star > 0)
return( as.data.frame(cbind(y,x,y.star)) )
}

This simulates an n size equal 100:

probit.data100 <- function(N=100,a=2,b=1) {
x <- rnorm(N)
y.star <- a + b*x + rnorm(N)
y <- (y.star > 0)
return( as.data.frame(cbind(y,x,y.star)) )
}

#predicted value
se.probit.phat100 <- function(x, par, V) {
z <- par[1] + par[2] * x
# Derivative of q w.r.t. alpha and beta 
J <- c( dnorm(z), dnorm(z)*par[2] )
return( sqrt(t(J) %*% V %*% J)  )
}

dat100 <- probit.data100()
res100 <- my.probit(dat100$y,dat100$x)
res100

This function below will calculate the confidence intervals based on a non-parametric bootstrap approach (notice the sample function being used):

N <- dim(probit.data(N=100, a=1, b=1))[1]
npb.par <- matrix(NA,100,2)
colnames(npb.par) <- c("alpha","beta")
npb.eystar <- matrix(NA,100,N)
for (t in 1:100) {
thisdta <- probit.data(N=100, a=1, b=1)[sample(1:N,N,replace=TRUE),]
npb.par[t,] <- my.probit(thisdta$y,thisdta$x)$par
}

This function below just cleans up the bootstrap output, and the confidence intervals are what I would like to plot:

processres <- function(simres) {
z <- t(apply(simres,2,function(x) { c(mean(x),median(x),sd(x),quantile(x,c(0.05,0.95)))     } ))
rownames(z) <- colnames(simres)
colnames(z) <- c("mean","median","sd","5%","95%")
z
}

processres(npb.par)

I would like to plot a graph like this (the one below), but add confidence intervals based on the processres function above. How can these confidence intervals be added to the plot?

x <- seq(-5,5,length=100)
plot(x, pnorm(1 - 0.5*x), ty='l', lwd=2, bty='n', xlab='x', ylab="Pr(y=1)")
rug(dat100$x)

I'm also open to a different plot code and/or package. I just want a graph based on this simulation with added confidence intervals.

Thanks!

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

三生一梦 2025-01-10 10:43:03

以下是根据模拟结果添加阴影 CI 的方法:

更新:现在绘制预期曲线(即使用平均 alpha 和 beta 值),并将这些平均值正确传递给 rnorm。

x <- seq(-5,5,length=100)
plot(x, pnorm(1 - 0.5*x), ty='n', lwd=2, bty='n', xlab='x', ylab="Pr(y=1)", 
     xaxs = 'i', ylim=c(0, 1))

params <- processres(npb.par)
sims <- 100000
sim.mat <- matrix(NA, ncol=length(x), nrow=sims)
for (i in 1:sims) {
  alpha <- rnorm(1, params[1, 1], params[1, 3])
  beta <- rnorm(1, params[2, 1], params[2, 3])
  sim.mat[i, ] <- pnorm(alpha - beta*x)
}

CI <- apply(sim.mat, 2, function(x) quantile(x, c(0.05, 0.95)))
polygon(c(x, rev(x)), c(CI[1, ], rev(CI[2, ])), col='gray', border=NA)
lines(x, pnorm(params[1, 1] - params[2, 1]*x), lwd=2)
rug(dat100$x)
box()

结果

Here's a way to add a shaded CI based on simulation results:

UPDATE: this now plots the expected curve (i.e. using mean alpha & beta values), and correctly passes these means to rnorm.

x <- seq(-5,5,length=100)
plot(x, pnorm(1 - 0.5*x), ty='n', lwd=2, bty='n', xlab='x', ylab="Pr(y=1)", 
     xaxs = 'i', ylim=c(0, 1))

params <- processres(npb.par)
sims <- 100000
sim.mat <- matrix(NA, ncol=length(x), nrow=sims)
for (i in 1:sims) {
  alpha <- rnorm(1, params[1, 1], params[1, 3])
  beta <- rnorm(1, params[2, 1], params[2, 3])
  sim.mat[i, ] <- pnorm(alpha - beta*x)
}

CI <- apply(sim.mat, 2, function(x) quantile(x, c(0.05, 0.95)))
polygon(c(x, rev(x)), c(CI[1, ], rev(CI[2, ])), col='gray', border=NA)
lines(x, pnorm(params[1, 1] - params[2, 1]*x), lwd=2)
rug(dat100$x)
box()

result

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文