局部离群因子 (LOF) 软件/演示?
是否有任何软件可以让我对 2D 数据集执行 LOF 异常值检测?我刚刚从原始论文中实现了 LOF,想检查我的结果是否正确。到目前为止我找不到任何工具或在线服务。
Is there any software that enables me to perform LOF outlier detection towards a 2D dataset? I just implemented LOF from the original paper and want to check whether my results are correct. So far I couldn't find any tool or online service.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
您应该检查 rapidminer 应用程序。并添加异常检测插件。
You should check rapidminer application. And add anomaly detection plugin.
您是否查看了有关局部异常值因素的维基百科文章?它提到了 ELKI,它有一个 LOF 实现(有索引支持,所以
O( n log n)
对于大型数据集)。请注意,许多人忽略了 LOF 中的可达距离,而只是近似它。 ELKI 实现据说是正确的,因此它可以帮助您很好地测试结果。
Did you check the Wikipedia article on Local Outlier Factor? It mentions ELKI, which has a LOF implementation (with index support, so
O(n log n)
for large data sets).Note that many people overlook the reachability-distance in LOF, and only approximate it. The ELKI implementation supposedly is correct, so it can help you well for testing your results.
Rapid Miner 将 DARPA 1998 数据集的 IP 地址属性视为多项式类型数据!但 LOF 并未对此进行优化。有趣的是,RAPID MINER 无法处理如此庞大的网络流量数据集。还有其他可用的实现吗?
Rapid Miner considers the IP address attribute of DARPA 1998 dataset as polynomial type data ! But LOF is not optimized for that. Interestingly RAPID MINER cannot handle such huge network traffic datasets. Any other implementation available ?