实施 3D DFT 时无法匹配结果
我正在尝试实现 3D DFT,但遇到了一些麻烦。我认为我应该做的就是只进行 3 个连续的 1D DFT,每个方向一个。假设一维 DFT 是正确的,你能看出这段代码有什么问题吗:
def dft3d(self, real3d, img3d, nx, ny, nz, dir):
#Transform depth
for i in range(nx):
for j in range(ny):
real = numpy.zeros(nz)
img = numpy.zeros(nz)
for k in range(nz):
real[k] = real3d[i][j][k]
img[k] = img3d[i][j][k]
self.dft(real, img, nz, 1) #This was indented too much. It should work now.
for k in range(nz):
real3d[i][j][k] = real[k]
img3d[i][j][k] = img[k]
#Transform cols
for k in range(nz):
for i in range(nx):
real = numpy.zeros(ny)
img = numpy.zeros(ny)
for j in range(ny):
real[j] = real3d[i][j][k]
img[j] = img3d[i][j][k]
self.dft(real, img, ny, 1)
for j in range(ny):
real3d[i][j][k] = real[j]
img3d[i][j][k] = img[j]
#Transform rows
for j in range(ny):
for k in range(nz):
real = numpy.zeros(nx)
img = numpy.zeros(nx)
for i in range(nx):
real[i] = real3d[i][j][k]
img[i] = img3d[i][j][k]
self.dft(real, img, nx, 1)
for i in range(nx):
real3d[i][j][k] = real[i]
img3d[i][j][k] = img[i]
我知道 python 中有内置版本,但我不能使用它们。我只是在 python 中测试我的算法,这样我就可以比较我的算法和内置算法的结果。据我所知,它对于 1D 和 2D 变换都工作得很好,但是一旦我将其扩展到 3D,结果就不再匹配。有谁知道出了什么问题吗?
I am trying to implement a 3D DFT but I am running into some trouble. What I believe I should do is to just do 3 consecutive 1D DFTs, one in each direction. Assuming that the 1D DFT is correct, can you see what is wrong with this code:
def dft3d(self, real3d, img3d, nx, ny, nz, dir):
#Transform depth
for i in range(nx):
for j in range(ny):
real = numpy.zeros(nz)
img = numpy.zeros(nz)
for k in range(nz):
real[k] = real3d[i][j][k]
img[k] = img3d[i][j][k]
self.dft(real, img, nz, 1) #This was indented too much. It should work now.
for k in range(nz):
real3d[i][j][k] = real[k]
img3d[i][j][k] = img[k]
#Transform cols
for k in range(nz):
for i in range(nx):
real = numpy.zeros(ny)
img = numpy.zeros(ny)
for j in range(ny):
real[j] = real3d[i][j][k]
img[j] = img3d[i][j][k]
self.dft(real, img, ny, 1)
for j in range(ny):
real3d[i][j][k] = real[j]
img3d[i][j][k] = img[j]
#Transform rows
for j in range(ny):
for k in range(nz):
real = numpy.zeros(nx)
img = numpy.zeros(nx)
for i in range(nx):
real[i] = real3d[i][j][k]
img[i] = img3d[i][j][k]
self.dft(real, img, nx, 1)
for i in range(nx):
real3d[i][j][k] = real[i]
img3d[i][j][k] = img[i]
I know there are built in versions of this in python, but I can't use those. I'm just testing my algorithm in python so I can compare results of my algorithm and the built in ones. As far as I could tell it worked fine for both 1D and 2D transforms, but once I expanded it to 3D the results no longer match. Does anyone know what is wrong?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
self.dft
的第一个实例缩进得太远。除此之外,我从提供的代码中看不出任何问题。
附带说明一下,如果您按照代码建议使用 numpy,即使不求助于内置 DFT/FFT,也可以显着简化代码。
例如,您可以索引 3D numpy 数组,如 data3D[i, j, k]。您可以通过执行
data3D[:, j, k]
、data3D[i, :, k]
、data3D[:, :, k]
进行切片code> 等,而不是在 for 循环中一次分配一个单独的元素。The first instance of
self.dft
is indented too far.Other than that, I see nothing wrong from the code provided.
As a side note, if you are using
numpy
as your code suggests, you can simplify your code significantly even without resorting to the built-in DFT/FFT.For example, you can index a 3D numpy array like
data3D[i, j, k]
. You can slice by doingdata3D[:, j, k]
,data3D[i, :, k]
,data3D[:, :, k]
, etc., instead of assigning individual elements one at a time within a for loop.