对称频谱的 iFFT

发布于 2025-01-01 08:57:26 字数 341 浏览 1 评论 0原文

我在对称频谱上执行 iFFT(使用 Python)。为什么结果不是实值信号而是包含复值?

# My symmetric spectrum
spectrum = numpy.array( [1+1j,2+2j,3+3j,3-3j,2-2j] )

# Perform the iFFT
print numpy.fft.ifft(spectrum)

输出:

(2.2+0.2j)
(-1.98979431354+0.2j)
(0.59464641547+0.2j)
(-0.74743281997+0.2j)
(0.942580718037+0.2j)

I perform the iFFT on a symmetric spectrum (using Python). Why is the result not an real-valued signal but contains complex values?

# My symmetric spectrum
spectrum = numpy.array( [1+1j,2+2j,3+3j,3-3j,2-2j] )

# Perform the iFFT
print numpy.fft.ifft(spectrum)

Output:

(2.2+0.2j)
(-1.98979431354+0.2j)
(0.59464641547+0.2j)
(-0.74743281997+0.2j)
(0.942580718037+0.2j)

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

心如狂蝶 2025-01-08 08:57:26

试试这样:

# My symmetric spectrum
spectrum = numpy.array( [0+0j,1+1j,2+2j,3+3j,0+0j,3-3j,2-2j,1-1j] )

# Perform the iFFT
print numpy.fft.ifft(spectrum)

通常 bin 0 是 DC,bin N/2 是奈奎斯特,并且这两个值都是实数。对于其他项,对称性是围绕奈奎斯特的复共轭。

使用 Octave(MATLAB 克隆),我得到的结果与您的原始输入数据相同:

octave-3.4.0:1> x = [1+1j,2+2j,3+3j,3-3j,2-2j];
octave-3.4.0:2> y = ifft(x)
y =

   2.20000 + 0.20000i  -1.98979 + 0.20000i   0.59465 + 0.20000i  -0.74743 + 0.20000i   0.94258 + 0.20000i

而使用上面的输入数据,我得到纯粹真实的结果:

octave-3.4.0:3> x = [0+0j,1+1j,2+2j,3+3j,0+0j,3-3j,2-2j,1-1j];
octave-3.4.0:4> y = ifft(x)
y =

   1.50000  -1.56066   0.00000   0.14645  -0.50000   0.56066  -1.00000   0.85355

我假设 numpy 可能使用相同的约定来排序 FFT/IFFT 输入/输出数据。

Try it like this:

# My symmetric spectrum
spectrum = numpy.array( [0+0j,1+1j,2+2j,3+3j,0+0j,3-3j,2-2j,1-1j] )

# Perform the iFFT
print numpy.fft.ifft(spectrum)

Normally bin 0 is DC, bin N/2 is Nyquist, and both of these values are real. For the other terms the symmetry is complex conjugate around Nyquist.

With Octave (MATLAB clone) I get the same result as you for your original input data:

octave-3.4.0:1> x = [1+1j,2+2j,3+3j,3-3j,2-2j];
octave-3.4.0:2> y = ifft(x)
y =

   2.20000 + 0.20000i  -1.98979 + 0.20000i   0.59465 + 0.20000i  -0.74743 + 0.20000i   0.94258 + 0.20000i

whereas with my input data above I get a purely real result:

octave-3.4.0:3> x = [0+0j,1+1j,2+2j,3+3j,0+0j,3-3j,2-2j,1-1j];
octave-3.4.0:4> y = ifft(x)
y =

   1.50000  -1.56066   0.00000   0.14645  -0.50000   0.56066  -1.00000   0.85355

I assume that numpy probably uses the same comnventions for ordering FFT/IFFT input/output data.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文