测试两条线是否相交 - JavaScript 函数

发布于 2024-12-29 14:29:21 字数 395 浏览 3 评论 0 原文

我尝试寻找一个 javascript 函数来检测两条线是否相交。

该函数将获取每条线(我们将其称为线 A 和线 B)的两个起点的 x、y 值。

就是如果相交则返回 true,否则返回 false。

函数示例。如果答案使用矢量对象,我很高兴。

Function isIntersect (lineAp1x, lineAp1y, lineAp2x, lineAp2y, lineBp1x, lineBp1y, lineBp2x, lineBp2y) 
{

    // JavaScript line intersecting test here. 

}

一些背景信息:此代码适用于我尝试在 html5 canvas 中制作的游戏,并且是我的碰撞检测的一部分。

I've tried searching for a javascript function that will detect if two lines intersect each other.

The function will take the x,y values of both the start end points for each line (we'll call them line A and line B).

Is to return true if they intersect, otherwise false.

Example of the function. I'm happy if the answer uses a vector object instead.

Function isIntersect (lineAp1x, lineAp1y, lineAp2x, lineAp2y, lineBp1x, lineBp1y, lineBp2x, lineBp2y) 
{

    // JavaScript line intersecting test here. 

}

Some background info: this code is for a game I'm trying to make in html5 canvas, and is part of my collision detection.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(10

自控 2025-01-05 14:29:22
// returns true if the line from (a,b)->(c,d) intersects with (p,q)->(r,s)
function intersects(a,b,c,d,p,q,r,s) {
  var det, gamma, lambda;
  det = (c - a) * (s - q) - (r - p) * (d - b);
  if (det === 0) {
    return false;
  } else {
    lambda = ((s - q) * (r - a) + (p - r) * (s - b)) / det;
    gamma = ((b - d) * (r - a) + (c - a) * (s - b)) / det;
    return (0 < lambda && lambda < 1) && (0 < gamma && gamma < 1);
  }
};

解释:(向量、矩阵和厚颜无耻的行列式)

直线可以通过一些初始向量 v 和方向向量 d 来描述:

r = v + lambda*d 

我们使用一个点 (a,b)< /code>作为初始向量,它们之间的差(ca,db)作为方向向量。我们的第二行也是如此。

如果两条线相交,则必须有一个点 X,可以通过沿第一条线行进一段距离 lambda 来到达该点,也可以通过沿第二条线行进 gamma 单位来到达该点。这为我们提供了两个 X 坐标的联立方程:

X = v1 + lambda*d1 
X = v2 + gamma *d2

这些方程可以用矩阵形式表示。我们检查行列式是否非零,以查看交集 X 是否存在。

如果存在交集,那么我们必须检查交集是否确实位于两组点之间。如果 lambda 大于 1,则交点超出第二个点。如果 lambda 小于 0,则交点位于第一个点之前。

因此,0 表示两条线相交!

// returns true if the line from (a,b)->(c,d) intersects with (p,q)->(r,s)
function intersects(a,b,c,d,p,q,r,s) {
  var det, gamma, lambda;
  det = (c - a) * (s - q) - (r - p) * (d - b);
  if (det === 0) {
    return false;
  } else {
    lambda = ((s - q) * (r - a) + (p - r) * (s - b)) / det;
    gamma = ((b - d) * (r - a) + (c - a) * (s - b)) / det;
    return (0 < lambda && lambda < 1) && (0 < gamma && gamma < 1);
  }
};

Explanation: (vectors, a matrix and a cheeky determinant)

Lines can be described by some initial vector, v, and a direction vector, d:

r = v + lambda*d 

We use one point (a,b) as the initial vector and the difference between them (c-a,d-b) as the direction vector. Likewise for our second line.

If our two lines intersect, then there must be a point, X, that is reachable by travelling some distance, lambda, along our first line and also reachable by travelling gamma units along our second line. This gives us two simultaneous equations for the coordinates of X:

X = v1 + lambda*d1 
X = v2 + gamma *d2

These equations can be represented in matrix form. We check that the determinant is non-zero to see if the intersection X even exists.

If there is an intersection, then we must check that the intersection actually lies between both sets of points. If lambda is greater than 1, the intersection is beyond the second point. If lambda is less than 0, the intersection is before the first point.

Hence, 0<lambda<1 && 0<gamma<1 indicates that the two lines intersect!

恬淡成诗 2025-01-05 14:29:22

Peter Wone 的答案是一个很好的解决方案,但缺乏解释。我花了大约一个小时来理解它是如何工作的,并且认为我已经足够理解它了。有关详细信息,请参阅他的答案: https://stackoverflow.com/a/16725715/697477

我还提供了一个解决方案对于下面代码中的共线线。

使用旋转方向检查交点

为了解释答案,让我们看一下两条线的每个交点的共同点。根据下图,我们可以看到 P1IP 到 < strong>P4 逆时针旋转。我们可以看到它的互补边顺时针旋转。现在,我们不知道它是否相交,因此我们不知道交点。但我们也可以看到 P1P2< /strong> 到 P4 也逆时针旋转。此外,P1P2P3 顺时针旋转。我们可以利用这些知识来确定两条线是否相交。

拉伸脸部

交叉点示例

线相交 线相交

您会注意到相交的线创建了四个指向相反方向的面。由于它们面向相反的方向,我们知道 P1P2P3 旋转方向与 P1< 不同/sub>P2P4。我们还知道 P1P3 > 到 P4 的旋转方向与 P2< /strong> 至 P3P4

非交叉点示例

直线无交叉点
Line No Intersection

在此示例中,您应该注意到,遵循相交测试的相同模式,两个面旋转相同方向。由于它们面向同一方向,因此我们知道它们不相交。

代码示例

因此,我们可以将其实现到 Peter Wone 提供的原始代码中。

// Check the direction these three points rotate
function RotationDirection(p1x, p1y, p2x, p2y, p3x, p3y) {
  if (((p3y - p1y) * (p2x - p1x)) > ((p2y - p1y) * (p3x - p1x)))
    return 1;
  else if (((p3y - p1y) * (p2x - p1x)) == ((p2y - p1y) * (p3x - p1x)))
    return 0;
  
  return -1;
}

function containsSegment(x1, y1, x2, y2, sx, sy) {
  if (x1 < x2 && x1 < sx && sx < x2) return true;
  else if (x2 < x1 && x2 < sx && sx < x1) return true;
  else if (y1 < y2 && y1 < sy && sy < y2) return true;
  else if (y2 < y1 && y2 < sy && sy < y1) return true;
  else if (x1 == sx && y1 == sy || x2 == sx && y2 == sy) return true;
  return false;
}

function hasIntersection(x1, y1, x2, y2, x3, y3, x4, y4) {
  var f1 = RotationDirection(x1, y1, x2, y2, x4, y4);
  var f2 = RotationDirection(x1, y1, x2, y2, x3, y3);
  var f3 = RotationDirection(x1, y1, x3, y3, x4, y4);
  var f4 = RotationDirection(x2, y2, x3, y3, x4, y4);
  
  // If the faces rotate opposite directions, they intersect.
  var intersect = f1 != f2 && f3 != f4;
  
  // If the segments are on the same line, we have to check for overlap.
  if (f1 == 0 && f2 == 0 && f3 == 0 && f4 == 0) {
    intersect = containsSegment(x1, y1, x2, y2, x3, y3) || containsSegment(x1, y1, x2, y2, x4, y4) ||
    containsSegment(x3, y3, x4, y4, x1, y1) || containsSegment(x3, y3, x4, y4, x2, y2);
  }
  
  return intersect;
}

// Main call for checking intersection. Particularly verbose for explanation purposes.
function checkIntersection() {
  // Grab the values
  var x1 = parseInt($('#p1x').val());
  var y1 = parseInt($('#p1y').val());
  var x2 = parseInt($('#p2x').val());
  var y2 = parseInt($('#p2y').val());
  var x3 = parseInt($('#p3x').val());
  var y3 = parseInt($('#p3y').val());
  var x4 = parseInt($('#p4x').val());
  var y4 = parseInt($('#p4y').val());

  // Determine the direction they rotate. (You can combine this all into one step.)
  var face1CounterClockwise = RotationDirection(x1, y1, x2, y2, x4, y4);
  var face2CounterClockwise = RotationDirection(x1, y1, x2, y2, x3, y3);
  var face3CounterClockwise = RotationDirection(x1, y1, x3, y3, x4, y4);
  var face4CounterClockwise = RotationDirection(x2, y2, x3, y3, x4, y4);

  // If face 1 and face 2 rotate different directions and face 3 and face 4 rotate different directions, 
  // then the lines intersect.
  var intersect = hasIntersection(x1, y1, x2, y2, x3, y3, x4, y4);

  // Output the results.
  var output = "Face 1 (P1, P2, P4) Rotates: " + ((face1CounterClockwise > 0) ? "counterClockWise" : ((face1CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
  var output = output + "Face 2 (P1, P2, P3) Rotates: " + ((face2CounterClockwise > 0) ? "counterClockWise" : ((face2CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
  var output = output + "Face 3 (P1, P3, P4) Rotates: " + ((face3CounterClockwise > 0) ? "counterClockWise" : ((face3CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
  var output = output + "Face 4 (P2, P3, P4) Rotates: " + ((face4CounterClockwise > 0) ? "counterClockWise" : ((face4CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
  var output = output + "Intersection: " + ((intersect) ? "Yes" : "No") + "<br />";
  $('#result').html(output);


  // Draw the lines.
  var canvas = $("#canvas");
  var context = canvas.get(0).getContext('2d');
  context.clearRect(0, 0, canvas.get(0).width, canvas.get(0).height);
  context.beginPath();
  context.moveTo(x1, y1);
  context.lineTo(x2, y2);
  context.moveTo(x3, y3);
  context.lineTo(x4, y4);
  context.stroke();
}

checkIntersection();
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>

<canvas id="canvas" width="200" height="200" style="border: 2px solid #000000; float: right;"></canvas>
<div style="float: left;">
  <div style="float: left;">
    <b>Line 1:</b>
    <br />P1 x:
    <input type="number" min="0" max="200" id="p1x" style="width: 40px;" onChange="checkIntersection();" value="0">y:
    <input type="number" min="0" max="200" id="p1y" style="width: 40px;" onChange="checkIntersection();" value="20">
    <br />P2 x:
    <input type="number" min="0" max="200" id="p2x" style="width: 40px;" onChange="checkIntersection();" value="100">y:
    <input type="number" min="0" max="200" id="p2y" style="width: 40px;" onChange="checkIntersection();" value="20">
    <br />
  </div>
  <div style="float: left;">
    <b>Line 2:</b>
    <br />P3 x:
    <input type="number" min="0" max="200" id="p3x" style="width: 40px;" onChange="checkIntersection();" value="150">y:
    <input type="number" min="0" max="200" id="p3y" style="width: 40px;" onChange="checkIntersection();" value="100">
    <br />P4 x:
    <input type="number" min="0" max="200" id="p4x" style="width: 40px;" onChange="checkIntersection();" value="0">y:
    <input type="number" min="0" max="200" id="p4y" style="width: 40px;" onChange="checkIntersection();" value="0">
    <br />
  </div>
  <br style="clear: both;" />
  <br />
  <div style="float: left; border: 1px solid #EEEEEE; padding: 2px;" id="result"></div>
</div>

Peter Wone's answer is a great solution, but it lacks an explanation. I spent the last hour or so understanding how it works and think I understand enough to explain it as well. See his answer for details: https://stackoverflow.com/a/16725715/697477

I've also included a solution for the co-linear lines in the code below.

Using Rotational Directions to check for intersection

To explain the answer, let's look at something common about every intersection of two lines. Given the picture below, we can see that P1 to IP to P4 rotates counter clockwise. We can see that it's complimentary sides rotate clockwise. Now, we don't know if it intersects, so we don't know the intersection point. But we can also see that P1 to P2 to P4 also rotates counter clockwise. Additionally, P1 to P2 to P3 rotates clock wise. We can use this knowledge to determine whether two lines intersect or not.

Stretching the face

Intersection Example

Line intersection Line Intersection

You'll notice that intersecting lines create four faces that point opposite directions. Since they face opposite directions, we know that the direction of P1 to P2 to P3 rotates a direction different than P1 to P2 to P4. We also know that P1 to P3 to P4 rotates a different direction than P2 to P3 to P4.

Non-Intersection Example

Line No Intersection
Line No Intersection

In this example, you should notice that following the same pattern for the intersection test, the two faces rotate the same direction. Since they face the same direction, we know that they do not intersect.

Code Sample

So, we can implement this into the original code supplied by Peter Wone.

// Check the direction these three points rotate
function RotationDirection(p1x, p1y, p2x, p2y, p3x, p3y) {
  if (((p3y - p1y) * (p2x - p1x)) > ((p2y - p1y) * (p3x - p1x)))
    return 1;
  else if (((p3y - p1y) * (p2x - p1x)) == ((p2y - p1y) * (p3x - p1x)))
    return 0;
  
  return -1;
}

function containsSegment(x1, y1, x2, y2, sx, sy) {
  if (x1 < x2 && x1 < sx && sx < x2) return true;
  else if (x2 < x1 && x2 < sx && sx < x1) return true;
  else if (y1 < y2 && y1 < sy && sy < y2) return true;
  else if (y2 < y1 && y2 < sy && sy < y1) return true;
  else if (x1 == sx && y1 == sy || x2 == sx && y2 == sy) return true;
  return false;
}

function hasIntersection(x1, y1, x2, y2, x3, y3, x4, y4) {
  var f1 = RotationDirection(x1, y1, x2, y2, x4, y4);
  var f2 = RotationDirection(x1, y1, x2, y2, x3, y3);
  var f3 = RotationDirection(x1, y1, x3, y3, x4, y4);
  var f4 = RotationDirection(x2, y2, x3, y3, x4, y4);
  
  // If the faces rotate opposite directions, they intersect.
  var intersect = f1 != f2 && f3 != f4;
  
  // If the segments are on the same line, we have to check for overlap.
  if (f1 == 0 && f2 == 0 && f3 == 0 && f4 == 0) {
    intersect = containsSegment(x1, y1, x2, y2, x3, y3) || containsSegment(x1, y1, x2, y2, x4, y4) ||
    containsSegment(x3, y3, x4, y4, x1, y1) || containsSegment(x3, y3, x4, y4, x2, y2);
  }
  
  return intersect;
}

// Main call for checking intersection. Particularly verbose for explanation purposes.
function checkIntersection() {
  // Grab the values
  var x1 = parseInt($('#p1x').val());
  var y1 = parseInt($('#p1y').val());
  var x2 = parseInt($('#p2x').val());
  var y2 = parseInt($('#p2y').val());
  var x3 = parseInt($('#p3x').val());
  var y3 = parseInt($('#p3y').val());
  var x4 = parseInt($('#p4x').val());
  var y4 = parseInt($('#p4y').val());

  // Determine the direction they rotate. (You can combine this all into one step.)
  var face1CounterClockwise = RotationDirection(x1, y1, x2, y2, x4, y4);
  var face2CounterClockwise = RotationDirection(x1, y1, x2, y2, x3, y3);
  var face3CounterClockwise = RotationDirection(x1, y1, x3, y3, x4, y4);
  var face4CounterClockwise = RotationDirection(x2, y2, x3, y3, x4, y4);

  // If face 1 and face 2 rotate different directions and face 3 and face 4 rotate different directions, 
  // then the lines intersect.
  var intersect = hasIntersection(x1, y1, x2, y2, x3, y3, x4, y4);

  // Output the results.
  var output = "Face 1 (P1, P2, P4) Rotates: " + ((face1CounterClockwise > 0) ? "counterClockWise" : ((face1CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
  var output = output + "Face 2 (P1, P2, P3) Rotates: " + ((face2CounterClockwise > 0) ? "counterClockWise" : ((face2CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
  var output = output + "Face 3 (P1, P3, P4) Rotates: " + ((face3CounterClockwise > 0) ? "counterClockWise" : ((face3CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
  var output = output + "Face 4 (P2, P3, P4) Rotates: " + ((face4CounterClockwise > 0) ? "counterClockWise" : ((face4CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
  var output = output + "Intersection: " + ((intersect) ? "Yes" : "No") + "<br />";
  $('#result').html(output);


  // Draw the lines.
  var canvas = $("#canvas");
  var context = canvas.get(0).getContext('2d');
  context.clearRect(0, 0, canvas.get(0).width, canvas.get(0).height);
  context.beginPath();
  context.moveTo(x1, y1);
  context.lineTo(x2, y2);
  context.moveTo(x3, y3);
  context.lineTo(x4, y4);
  context.stroke();
}

checkIntersection();
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>

<canvas id="canvas" width="200" height="200" style="border: 2px solid #000000; float: right;"></canvas>
<div style="float: left;">
  <div style="float: left;">
    <b>Line 1:</b>
    <br />P1 x:
    <input type="number" min="0" max="200" id="p1x" style="width: 40px;" onChange="checkIntersection();" value="0">y:
    <input type="number" min="0" max="200" id="p1y" style="width: 40px;" onChange="checkIntersection();" value="20">
    <br />P2 x:
    <input type="number" min="0" max="200" id="p2x" style="width: 40px;" onChange="checkIntersection();" value="100">y:
    <input type="number" min="0" max="200" id="p2y" style="width: 40px;" onChange="checkIntersection();" value="20">
    <br />
  </div>
  <div style="float: left;">
    <b>Line 2:</b>
    <br />P3 x:
    <input type="number" min="0" max="200" id="p3x" style="width: 40px;" onChange="checkIntersection();" value="150">y:
    <input type="number" min="0" max="200" id="p3y" style="width: 40px;" onChange="checkIntersection();" value="100">
    <br />P4 x:
    <input type="number" min="0" max="200" id="p4x" style="width: 40px;" onChange="checkIntersection();" value="0">y:
    <input type="number" min="0" max="200" id="p4y" style="width: 40px;" onChange="checkIntersection();" value="0">
    <br />
  </div>
  <br style="clear: both;" />
  <br />
  <div style="float: left; border: 1px solid #EEEEEE; padding: 2px;" id="result"></div>
</div>

愁以何悠 2025-01-05 14:29:22
function lineIntersect(x1,y1,x2,y2, x3,y3,x4,y4) {
    var x=((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4));
    var y=((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4));
    if (isNaN(x)||isNaN(y)) {
        return false;
    } else {
        if (x1>=x2) {
            if (!(x2<=x&&x<=x1)) {return false;}
        } else {
            if (!(x1<=x&&x<=x2)) {return false;}
        }
        if (y1>=y2) {
            if (!(y2<=y&&y<=y1)) {return false;}
        } else {
            if (!(y1<=y&&y<=y2)) {return false;}
        }
        if (x3>=x4) {
            if (!(x4<=x&&x<=x3)) {return false;}
        } else {
            if (!(x3<=x&&x<=x4)) {return false;}
        }
        if (y3>=y4) {
            if (!(y4<=y&&y<=y3)) {return false;}
        } else {
            if (!(y3<=y&&y<=y4)) {return false;}
        }
    }
    return true;
}

我从中找到了答案的 wiki 页面。

function lineIntersect(x1,y1,x2,y2, x3,y3,x4,y4) {
    var x=((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4));
    var y=((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4));
    if (isNaN(x)||isNaN(y)) {
        return false;
    } else {
        if (x1>=x2) {
            if (!(x2<=x&&x<=x1)) {return false;}
        } else {
            if (!(x1<=x&&x<=x2)) {return false;}
        }
        if (y1>=y2) {
            if (!(y2<=y&&y<=y1)) {return false;}
        } else {
            if (!(y1<=y&&y<=y2)) {return false;}
        }
        if (x3>=x4) {
            if (!(x4<=x&&x<=x3)) {return false;}
        } else {
            if (!(x3<=x&&x<=x4)) {return false;}
        }
        if (y3>=y4) {
            if (!(y4<=y&&y<=y3)) {return false;}
        } else {
            if (!(y3<=y&&y<=y4)) {return false;}
        }
    }
    return true;
}

The wiki page I found the answer from.

执笔绘流年 2025-01-05 14:29:22

虽然能够找到交点很有用,但测试线段是否相交最常用于多边形命中测试,并且考虑到其通常的应用,您需要这样做< em>快。因此我建议你这样做,只使用减法、乘法、比较和AND。 Turn 计算由三个点描述的两条边之间的坡度变化方向:1 表示逆时针,0 表示不转弯,-1 表示顺时针。

此代码需要表示为 GLatLng 对象的点,但可以轻松地重写为其他表示系统。斜率比较已标准化为 epsilon 对潮湿浮点误差的容忍度。

function Turn(p1, p2, p3) {
  a = p1.lng(); b = p1.lat(); 
  c = p2.lng(); d = p2.lat();
  e = p3.lng(); f = p3.lat();
  A = (f - b) * (c - a);
  B = (d - b) * (e - a);
  return (A > B + Number.EPSILON) ? 1 : (A + Number.EPSILON < B) ? -1 : 0;
}

function isIntersect(p1, p2, p3, p4) {
  return (Turn(p1, p3, p4) != Turn(p2, p3, p4)) && (Turn(p1, p2, p3) != Turn(p1, p2, p4));
}

Although it is useful to be able to find the intersection point, testing for whether line segments intersect is most often used for polygon hit-testing, and given the usual applications of that, you need to do it fast. Therefore I suggest you do it like this, using only subtraction, multiplication, comparison and AND. Turn computes the direction of the change in slope between the two edges described by the three points: 1 means counter-clockwise, 0 means no turn and -1 means clockwise.

This code expects points expressed as GLatLng objects but can be trivially rewritten to other systems of representation. The slope comparison has been normalised to epsilon tolerance to damp floating point errors.

function Turn(p1, p2, p3) {
  a = p1.lng(); b = p1.lat(); 
  c = p2.lng(); d = p2.lat();
  e = p3.lng(); f = p3.lat();
  A = (f - b) * (c - a);
  B = (d - b) * (e - a);
  return (A > B + Number.EPSILON) ? 1 : (A + Number.EPSILON < B) ? -1 : 0;
}

function isIntersect(p1, p2, p3, p4) {
  return (Turn(p1, p3, p4) != Turn(p2, p3, p4)) && (Turn(p1, p2, p3) != Turn(p1, p2, p4));
}
白龙吟 2025-01-05 14:29:22

我使用 x/y 而不是 lat()/long() 重写了 Peter Wone 对单个函数的回答

function isIntersecting(p1, p2, p3, p4) {
    function CCW(p1, p2, p3) {
        return (p3.y - p1.y) * (p2.x - p1.x) > (p2.y - p1.y) * (p3.x - p1.x);
    }
    return (CCW(p1, p3, p4) != CCW(p2, p3, p4)) && (CCW(p1, p2, p3) != CCW(p1, p2, p4));
}

I've rewritten Peter Wone's answer to a single function using x/y instead of lat()/long()

function isIntersecting(p1, p2, p3, p4) {
    function CCW(p1, p2, p3) {
        return (p3.y - p1.y) * (p2.x - p1.x) > (p2.y - p1.y) * (p3.x - p1.x);
    }
    return (CCW(p1, p3, p4) != CCW(p2, p3, p4)) && (CCW(p1, p2, p3) != CCW(p1, p2, p4));
}
街角卖回忆 2025-01-05 14:29:22

这是一个 TypeScript 实现,很大程度上受到 Dan Fox 解决方案的启发。
此实现将为您提供交点(如果有)。否则(平行或无交集),将返回undefined

interface Point2D {
  x: number;
  y: number;
}

function intersection(from1: Point2D, to1: Point2D, from2: Point2D, to2: Point2D): Point2D {
  const dX: number = to1.x - from1.x;
  const dY: number = to1.y - from1.y;

  const determinant: number = dX * (to2.y - from2.y) - (to2.x - from2.x) * dY;
  if (determinant === 0) return undefined; // parallel lines

  const lambda: number = ((to2.y - from2.y) * (to2.x - from1.x) + (from2.x - to2.x) * (to2.y - from1.y)) / determinant;
  const gamma: number = ((from1.y - to1.y) * (to2.x - from1.x) + dX * (to2.y - from1.y)) / determinant;

  // check if there is an intersection
  if (!(0 <= lambda && lambda <= 1) || !(0 <= gamma && gamma <= 1)) return undefined;

  return {
    x: from1.x + lambda * dX,
    y: from1.y + lambda * dY,
  };
}

Here comes a TypeScript implementation, heavily inspired by Dan Fox's solution.
This implementation will give you the intersection point, if there is one. Otherwise (parallel or no intersection), undefined will be returned.

interface Point2D {
  x: number;
  y: number;
}

function intersection(from1: Point2D, to1: Point2D, from2: Point2D, to2: Point2D): Point2D {
  const dX: number = to1.x - from1.x;
  const dY: number = to1.y - from1.y;

  const determinant: number = dX * (to2.y - from2.y) - (to2.x - from2.x) * dY;
  if (determinant === 0) return undefined; // parallel lines

  const lambda: number = ((to2.y - from2.y) * (to2.x - from1.x) + (from2.x - to2.x) * (to2.y - from1.y)) / determinant;
  const gamma: number = ((from1.y - to1.y) * (to2.x - from1.x) + dX * (to2.y - from1.y)) / determinant;

  // check if there is an intersection
  if (!(0 <= lambda && lambda <= 1) || !(0 <= gamma && gamma <= 1)) return undefined;

  return {
    x: from1.x + lambda * dX,
    y: from1.y + lambda * dY,
  };
}
深海蓝天 2025-01-05 14:29:22

这是一个基于 this gist 的版本,其中包含一些更简洁的变量名称和一些 Coffee。

JavaScript 版本

var lineSegmentsIntersect = (x1, y1, x2, y2, x3, y3, x4, y4)=> {
    var a_dx = x2 - x1;
    var a_dy = y2 - y1;
    var b_dx = x4 - x3;
    var b_dy = y4 - y3;
    var s = (-a_dy * (x1 - x3) + a_dx * (y1 - y3)) / (-b_dx * a_dy + a_dx * b_dy);
    var t = (+b_dx * (y1 - y3) - b_dy * (x1 - x3)) / (-b_dx * a_dy + a_dx * b_dy);
    return (s >= 0 && s <= 1 && t >= 0 && t <= 1);
}

CoffeeScript 版本

lineSegmentsIntersect = (x1, y1, x2, y2, x3, y3, x4, y4)->
    a_dx = x2 - x1
    a_dy = y2 - y1
    b_dx = x4 - x3
    b_dy = y4 - y3
    s = (-a_dy * (x1 - x3) + a_dx * (y1 - y3)) / (-b_dx * a_dy + a_dx * b_dy)
    t = (+b_dx * (y1 - y3) - b_dy * (x1 - x3)) / (-b_dx * a_dy + a_dx * b_dy)
    (0 <= s <= 1 and 0 <= t <= 1)

Here's a version based on this gist with some more concise variable names, and some Coffee.

JavaScript version

var lineSegmentsIntersect = (x1, y1, x2, y2, x3, y3, x4, y4)=> {
    var a_dx = x2 - x1;
    var a_dy = y2 - y1;
    var b_dx = x4 - x3;
    var b_dy = y4 - y3;
    var s = (-a_dy * (x1 - x3) + a_dx * (y1 - y3)) / (-b_dx * a_dy + a_dx * b_dy);
    var t = (+b_dx * (y1 - y3) - b_dy * (x1 - x3)) / (-b_dx * a_dy + a_dx * b_dy);
    return (s >= 0 && s <= 1 && t >= 0 && t <= 1);
}

CoffeeScript version

lineSegmentsIntersect = (x1, y1, x2, y2, x3, y3, x4, y4)->
    a_dx = x2 - x1
    a_dy = y2 - y1
    b_dx = x4 - x3
    b_dy = y4 - y3
    s = (-a_dy * (x1 - x3) + a_dx * (y1 - y3)) / (-b_dx * a_dy + a_dx * b_dy)
    t = (+b_dx * (y1 - y3) - b_dy * (x1 - x3)) / (-b_dx * a_dy + a_dx * b_dy)
    (0 <= s <= 1 and 0 <= t <= 1)
昔日梦未散 2025-01-05 14:29:22

首先,找到交点坐标 - 这里有详细描述:
http://www.mathopenref.com/coordintersection.html

然后检查 x 坐标是否为交集落在其中一条线的 x 范围内(或者如果您愿意,也可以对 y 坐标执行相同的操作),
即,如果 xIntersection 位于 lineAp1x 和 lineAp2x 之间,则它们相交。

First, find intersection coordinates - here it's described in detail:
http://www.mathopenref.com/coordintersection.html

Then check if the x-coordinate for intersection falls within the x ranges for one of the lines (or do the same with y-coordinate, if you prefer),
i.e. if xIntersection is between lineAp1x and lineAp2x, then they intersect.

莫多说 2025-01-05 14:29:22

对于所有想要准备好冷融合解决方案的人,以下是我改编自http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/awt/geom/Line2D.java#Line2D.linesIntersect%28double%2Cdouble%2Cdouble %2Cdouble%2Cdouble%2Cdouble%2Cdouble%2Cdouble%29

重要的函数是 ccw 和来自java.awt.geom.Line2D的linesIntersect,我将它们写入coldfusion中,所以我们开始:

<cffunction name="relativeCCW" description="schnittpunkt der vier punkte (2 geraden) berechnen">
<!---
Returns an indicator of where the specified point (px,py) lies with respect to this line segment. See the method comments of relativeCCW(double,double,double,double,double,double) to interpret the return value.
Parameters:
px the X coordinate of the specified point to be compared with this Line2D
py the Y coordinate of the specified point to be compared with this Line2D
Returns:
an integer that indicates the position of the specified coordinates with respect to this Line2D
--->
<cfargument name="x1" type="numeric" required="yes" >
<cfargument name="y1" type="numeric" required="yes">
<cfargument name="x2" type="numeric" required="yes" >
<cfargument name="y2" type="numeric" required="yes">
<cfargument name="px" type="numeric" required="yes" >
<cfargument name="py" type="numeric" required="yes">
    <cfscript>
    x2 = x2 - x1;
    y2 = y2 - y1;
    px = px - x1;
    py = py - y1;
    ccw = (px * y2) - (py * x2);
    if (ccw EQ 0) {
        // The point is colinear, classify based on which side of
        // the segment the point falls on.  We can calculate a
        // relative value using the projection of px,py onto the
        // segment - a negative value indicates the point projects
        // outside of the segment in the direction of the particular
        // endpoint used as the origin for the projection.
        ccw = (px * x2) + (py * y2);
        if (ccw GT 0) {
            // Reverse the projection to be relative to the original x2,y2
            // x2 and y2 are simply negated.
            // px and py need to have (x2 - x1) or (y2 - y1) subtracted
            //    from them (based on the original values)
            // Since we really want to get a positive answer when the
             //    point is "beyond (x2,y2)", then we want to calculate
            //    the inverse anyway - thus we leave x2 & y2 negated.       
            px = px - x2;
            py = py - y2;
            ccw = (px * x2) + (py * y2);
            if (ccw LT 0) {
                ccw = 0;
                }
        }
    }
    if (ccw LT 0) {
        ret = -1;
    }
    else if (ccw GT 0) {
        ret = 1;
    }
    else {
        ret = 0;
    }   
    </cfscript> 
    <cfreturn ret>
</cffunction>


<cffunction name="linesIntersect" description="schnittpunkt der vier punkte (2 geraden) berechnen">
<cfargument name="x1" type="numeric" required="yes" >
<cfargument name="y1" type="numeric" required="yes">
<cfargument name="x2" type="numeric" required="yes" >
<cfargument name="y2" type="numeric" required="yes">
<cfargument name="x3" type="numeric" required="yes" >
<cfargument name="y3" type="numeric" required="yes">
<cfargument name="x4" type="numeric" required="yes" >
<cfargument name="y4" type="numeric" required="yes">
    <cfscript>
    a1 = relativeCCW(x1, y1, x2, y2, x3, y3);
    a2 = relativeCCW(x1, y1, x2, y2, x4, y4);
    a3 = relativeCCW(x3, y3, x4, y4, x1, y1);
    a4 = relativeCCW(x3, y3, x4, y4, x2, y2);
    aa = ((relativeCCW(x1, y1, x2, y2, x3, y3) * relativeCCW(x1, y1, x2, y2, x4, y4) LTE 0)
            && (relativeCCW(x3, y3, x4, y4, x1, y1) * relativeCCW(x3, y3, x4, y4, x2, y2) LTE 0));
    </cfscript>
 <cfreturn aa>
</cffunction>

我希望这可以帮助适应其他语言?

For all folks who would like to have a solutions ready for coldfusion, here is what I adapted from http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/awt/geom/Line2D.java#Line2D.linesIntersect%28double%2Cdouble%2Cdouble%2Cdouble%2Cdouble%2Cdouble%2Cdouble%2Cdouble%29

the imporants functions are ccw and linesIntersect from java.awt.geom.Line2D and I wrote them into coldfusion, so here we go:

<cffunction name="relativeCCW" description="schnittpunkt der vier punkte (2 geraden) berechnen">
<!---
Returns an indicator of where the specified point (px,py) lies with respect to this line segment. See the method comments of relativeCCW(double,double,double,double,double,double) to interpret the return value.
Parameters:
px the X coordinate of the specified point to be compared with this Line2D
py the Y coordinate of the specified point to be compared with this Line2D
Returns:
an integer that indicates the position of the specified coordinates with respect to this Line2D
--->
<cfargument name="x1" type="numeric" required="yes" >
<cfargument name="y1" type="numeric" required="yes">
<cfargument name="x2" type="numeric" required="yes" >
<cfargument name="y2" type="numeric" required="yes">
<cfargument name="px" type="numeric" required="yes" >
<cfargument name="py" type="numeric" required="yes">
    <cfscript>
    x2 = x2 - x1;
    y2 = y2 - y1;
    px = px - x1;
    py = py - y1;
    ccw = (px * y2) - (py * x2);
    if (ccw EQ 0) {
        // The point is colinear, classify based on which side of
        // the segment the point falls on.  We can calculate a
        // relative value using the projection of px,py onto the
        // segment - a negative value indicates the point projects
        // outside of the segment in the direction of the particular
        // endpoint used as the origin for the projection.
        ccw = (px * x2) + (py * y2);
        if (ccw GT 0) {
            // Reverse the projection to be relative to the original x2,y2
            // x2 and y2 are simply negated.
            // px and py need to have (x2 - x1) or (y2 - y1) subtracted
            //    from them (based on the original values)
            // Since we really want to get a positive answer when the
             //    point is "beyond (x2,y2)", then we want to calculate
            //    the inverse anyway - thus we leave x2 & y2 negated.       
            px = px - x2;
            py = py - y2;
            ccw = (px * x2) + (py * y2);
            if (ccw LT 0) {
                ccw = 0;
                }
        }
    }
    if (ccw LT 0) {
        ret = -1;
    }
    else if (ccw GT 0) {
        ret = 1;
    }
    else {
        ret = 0;
    }   
    </cfscript> 
    <cfreturn ret>
</cffunction>


<cffunction name="linesIntersect" description="schnittpunkt der vier punkte (2 geraden) berechnen">
<cfargument name="x1" type="numeric" required="yes" >
<cfargument name="y1" type="numeric" required="yes">
<cfargument name="x2" type="numeric" required="yes" >
<cfargument name="y2" type="numeric" required="yes">
<cfargument name="x3" type="numeric" required="yes" >
<cfargument name="y3" type="numeric" required="yes">
<cfargument name="x4" type="numeric" required="yes" >
<cfargument name="y4" type="numeric" required="yes">
    <cfscript>
    a1 = relativeCCW(x1, y1, x2, y2, x3, y3);
    a2 = relativeCCW(x1, y1, x2, y2, x4, y4);
    a3 = relativeCCW(x3, y3, x4, y4, x1, y1);
    a4 = relativeCCW(x3, y3, x4, y4, x2, y2);
    aa = ((relativeCCW(x1, y1, x2, y2, x3, y3) * relativeCCW(x1, y1, x2, y2, x4, y4) LTE 0)
            && (relativeCCW(x3, y3, x4, y4, x1, y1) * relativeCCW(x3, y3, x4, y4, x2, y2) LTE 0));
    </cfscript>
 <cfreturn aa>
</cffunction>

I hope this can help for adapting to other laguages?

殊姿 2025-01-05 14:29:22

使用毕氏定理求出两个物体之间的距离并加上半径毕氏定理距离公式

Use the pythageorum theorum to find the distance between the 2 objects and add the radius Pythageorum Theorum Distance Formula

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文