如何找到这些具有公共点的区间的最大数量?
我一直在审查算法,这是 Anany Levitin 的算法书中的问题。
你有一个包含 n 个开区间 (a1, b1), ... , (an, bn) 的列表 实线。 (开区间 (a, b) 严格包含所有点 在其端点 a 和 b 之间,即 (a, b)= (xi a< x < b}。) 求 具有公共点的这些区间的最大数量。为了 例如,对于区间 (1, 4)、(0, 3)、( -1.5, 2)、(3.6, 5),此 最大数量为 3。为该问题设计一个算法 优于二次时间效率。
任何人都可以帮助我形成一种算法或建议互联网上的任何资源..
谢谢, 哈林德拉
I have been reviewing algorithms, this is question from Anany Levitin's algo book..
You have a list of n open intervals (a1, b1), ... , (an, bn) on the
real line. (An open interval (a, b) comprises all the points strictly
between its endpoints a and b, i.e., (a, b)= (xi a< x < b}.) Find the
maximal number of these intervals that have a common point. For
example, for the intervals (1, 4), (0, 3), ( -1.5, 2), (3.6, 5), this
maximal number is 3. Design an algorithm for this problem with a
better than quadratic time efficiency.
Can any one help me forming an algorithm for it or suggest any resources on the internet..
Thanks ,
Hareendra
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
解决这个问题的一种方法如下:假设您要在实数轴上排列所有间隔。从最左边开始,扫描间隔。每次输入间隔时,都会增加活动间隔数量的计数器,每次离开时,都会减少计数器。在此过程中计数器的最大值就是您要查找的数字。
为了实现这一点,请将间隔的所有起点和终点(一起)排序到一个长度为 2n 的巨大列表中,其中包含所有线段出现时的起点和终点。然后,从左到右扫描列表,根据找到的点更新计数器(+1 表示起点,-1 表示终点)。排序需要 O(n log n) 时间,扫描需要 O(n) 时间,总共需要 O(n log n) 时间。
希望这有帮助!
One way to approach this would be as follows: suppose that you were to line up all the intervals on the real number line. Starting from the far left, scan across the intervals. Each time you enter an interval, increment a counter of the number of active intervals, and each time you leave one, decrement the counter. The maximum value of the counter over the course of this process is then the number you're looking for.
To implement this, sort all of the start and end points of the intervals (together) into a giant list of length 2n that contains the start and end points of all the segments as they appear. Then, scan the list from left to right updating the counter based on the points you find (+1 for start points, -1 for end points). Sorting takes O(n log n) time and the scan takes O(n) time for a total of O(n log n) time.
Hope this helps!
排序为 Starts[] 和 Ends[]。
Sort into Starts[] and Ends[].
队列大小将是一段时间内重叠的间隔。
The queue size will be the overlapped intervals in a time.