以扩展的圆形螺旋迭代二维数组

发布于 2024-12-28 13:52:03 字数 2379 浏览 1 评论 0原文

给定一个 n by n 矩阵 M,位于行 i 和列 j,我想迭代圆形螺旋中的所有相邻值。

这样做的目的是测试某个函数 f(它取决于 M),以找到远离 (i, j) 的半径,其中 f< /code> 返回 True。因此,f 看起来像这样:

def f(x, y):
    """do stuff with x and y, and return a bool"""

并且会这样调用:

R = numpy.zeros(M.shape, dtype=numpy.int)
# for (i, j) in M
for (radius, (cx, cy)) in circle_around(i, j):
    if not f(M[i][j], M[cx][cy]):
       R[cx][cy] = radius - 1
       break

其中,circle_around 是返回圆形螺旋中索引(迭代器)的函数。因此,对于 M 中的每个点,此代码都会计算并存储从该点开始的半径,其中 f 返回 True

如果有更有效的计算 R 的方法,我也愿意这样做。


更新:

感谢所有提交答案的人。我编写了一个简短的函数来绘制 circle_around 迭代器的输出,以显示它们的作用。如果您更新答案或发布新答案,则可以使用此代码来验证您的解决方案。

from matplotlib import pyplot as plt
def plot(g, name):
    plt.axis([-10, 10, -10, 10])
    ax = plt.gca()
    ax.yaxis.grid(color='gray')
    ax.xaxis.grid(color='gray')

    X, Y = [], []
    for i in xrange(100):
        (r, (x, y)) = g.next()
        X.append(x)
        Y.append(y)
        print "%d: radius %d" % (i, r)

    plt.plot(X, Y, 'r-', linewidth=2.0)
    plt.title(name)
    plt.savefig(name + ".png")

结果如下: 绘图(circle_around(0, 0),“FJ”): circle_around by FJ

plot(circle_around(0, 0, 10), "WolframH")circle_around by WolframH

我已将 Magnesium 的建议编码如下:

def circle_around_magnesium(x, y):
    import math
    theta = 0
    dtheta = math.pi / 32.0
    a, b = (0, 1) # are there better params to use here?
    spiral = lambda theta : a + b*theta
    lastX, lastY = (x, y)
    while True:
        r = spiral(theta)
        X = r * math.cos(theta)
        Y = r * math.sin(theta)
        if round(X) != lastX or round(Y) != lastY:
            lastX, lastY = round(X), round(Y)
            yield (r, (lastX, lastY))
        theta += dtheta

plot(circle_around(0, 0, 10) ,“镁”)circle_around by Magnesium

如您所见,满足我正在寻找的界面的结果都没有产生圆形螺旋它涵盖了 0, 0 周围的所有索引。FJ 是最接近的,尽管 WolframH 命中了正确的点,只是不是按螺旋顺序排列。

Given an n by n matrix M, at row i and column j, I'd like to iterate over all the neighboring values in a circular spiral.

The point of doing this is to test some function, f, which depends on M, to find the radius away from (i, j) in which f returns True. So, f looks like this:

def f(x, y):
    """do stuff with x and y, and return a bool"""

and would be called like this:

R = numpy.zeros(M.shape, dtype=numpy.int)
# for (i, j) in M
for (radius, (cx, cy)) in circle_around(i, j):
    if not f(M[i][j], M[cx][cy]):
       R[cx][cy] = radius - 1
       break

Where circle_around is the function that returns (an iterator to) indices in a circular spiral. So for every point in M, this code would compute and store the radius from that point in which f returns True.

If there's a more efficient way of computing R, I'd be open to that, too.


Update:

Thanks to everyone who submitted answers. I've written a short function to plot the output from your circle_around iterators, to show what they do. If you update your answer or post a new one, you can use this code to validate your solution.

from matplotlib import pyplot as plt
def plot(g, name):
    plt.axis([-10, 10, -10, 10])
    ax = plt.gca()
    ax.yaxis.grid(color='gray')
    ax.xaxis.grid(color='gray')

    X, Y = [], []
    for i in xrange(100):
        (r, (x, y)) = g.next()
        X.append(x)
        Y.append(y)
        print "%d: radius %d" % (i, r)

    plt.plot(X, Y, 'r-', linewidth=2.0)
    plt.title(name)
    plt.savefig(name + ".png")

Here are the results:
plot(circle_around(0, 0), "F.J"):
circle_around by F.J

plot(circle_around(0, 0, 10), "WolframH"):
circle_around by WolframH

I've coded up Magnesium's suggestion as follows:

def circle_around_magnesium(x, y):
    import math
    theta = 0
    dtheta = math.pi / 32.0
    a, b = (0, 1) # are there better params to use here?
    spiral = lambda theta : a + b*theta
    lastX, lastY = (x, y)
    while True:
        r = spiral(theta)
        X = r * math.cos(theta)
        Y = r * math.sin(theta)
        if round(X) != lastX or round(Y) != lastY:
            lastX, lastY = round(X), round(Y)
            yield (r, (lastX, lastY))
        theta += dtheta

plot(circle_around(0, 0, 10), "magnesium"):
circle_around by Magnesium

As you can see, none of the results that satisfy the interface I'm looking for have produced a circular spiral that covers all of the indices around 0, 0. F.J's is the closest, although WolframH's hits the right points, just not in spiral order.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(7

难如初 2025-01-04 13:52:03

由于提到点的顺序并不重要,因此我只是按照它们在给定半径处出现的角度 (arctan2) 对它们进行排序。更改 N 以获得更多积分。

from numpy import *
N = 8

# Find the unique distances
X,Y = meshgrid(arange(N),arange(N))
G = sqrt(X**2+Y**2)
U = unique(G)

# Identify these coordinates
blocks = [[pair for pair in zip(*where(G==idx))] for idx in U if idx<N/2]

# Permute along the different orthogonal directions
directions = array([[1,1],[-1,1],[1,-1],[-1,-1]])

all_R = []
for b in blocks:
    R = set()
    for item in b:
        for x in item*directions:
            R.add(tuple(x))

    R = array(list(R))

    # Sort by angle
    T = array([arctan2(*x) for x in R])
    R = R[argsort(T)]
    all_R.append(R)

# Display the output
from pylab import *
colors = ['r','k','b','y','g']*10
for c,R in zip(colors,all_R):
    X,Y = map(list,zip(*R))

    # Connect last point
    X = X + [X[0],]
    Y = Y + [Y[0],]
    scatter(X,Y,c=c,s=150)
    plot(X,Y,color=c)

axis('equal')
show()

N=8 提供:

在此处输入图像描述

更多积分 N=16< /code> (抱歉色盲):

在此处输入图像描述

这明显接近一个圆并按顺序击中每个网格点半径不断增加。

在此处输入图像描述

Since it was mentioned that the order of the points do not matter, I've simply ordered them by the angle (arctan2) in which they appear at a given radius. Change N to get more points.

from numpy import *
N = 8

# Find the unique distances
X,Y = meshgrid(arange(N),arange(N))
G = sqrt(X**2+Y**2)
U = unique(G)

# Identify these coordinates
blocks = [[pair for pair in zip(*where(G==idx))] for idx in U if idx<N/2]

# Permute along the different orthogonal directions
directions = array([[1,1],[-1,1],[1,-1],[-1,-1]])

all_R = []
for b in blocks:
    R = set()
    for item in b:
        for x in item*directions:
            R.add(tuple(x))

    R = array(list(R))

    # Sort by angle
    T = array([arctan2(*x) for x in R])
    R = R[argsort(T)]
    all_R.append(R)

# Display the output
from pylab import *
colors = ['r','k','b','y','g']*10
for c,R in zip(colors,all_R):
    X,Y = map(list,zip(*R))

    # Connect last point
    X = X + [X[0],]
    Y = Y + [Y[0],]
    scatter(X,Y,c=c,s=150)
    plot(X,Y,color=c)

axis('equal')
show()

Gives for N=8:

enter image description here

More points N=16 (sorry for the colorblind):

enter image description here

This clearly approaches a circle and hits every grid point in order of increasing radius.

enter image description here

半衾梦 2025-01-04 13:52:03

随着距离的增加而产生点的一种方法是将其分解简单的部分,然后将各部分的结果合并在一起。很明显,itertools.merge 应该进行合并。 简单的部分,因为对于固定的x,点(x, y)可以通过仅查看y的值来排序。

下面是该算法的(简单的)实现。请注意,使用平方欧几里德距离,并且包括中心点。最重要的是,仅考虑 x 在 range(x_end) 中的点 (x, y),但我认为这适合您的用例(其中 x_end 将是 n 在上面的符号中)。

from heapq import merge
from itertools import count

def distance_column(x0, x, y0):
    dist_x = (x - x0) ** 2
    yield dist_x, (x, y0)
    for dy in count(1):
        dist = dist_x + dy ** 2
        yield dist, (x, y0 + dy)
        yield dist, (x, y0 - dy)

def circle_around(x0, y0, end_x):
    for dist_point in merge(*(distance_column(x0, x, y0) for x in range(end_x))):
        yield dist_point

编辑:测试代码:

def show(circle):
    d = dict((p, i) for i, (dist, p) in enumerate(circle))
    max_x = max(p[0] for p in d) + 1
    max_y = max(p[1] for p in d) + 1
    return "\n".join(" ".join("%3d" % d[x, y] if (x, y) in d else "   " for x in range(max_x + 1)) for y in range(max_y + 1))

import itertools
print(show(itertools.islice(circle_around(5, 5, 11), 101)))

测试结果(点按照circle_around产生的顺序编号):

             92  84  75  86  94                
     98  73  64  52  47  54  66  77 100        
     71  58  40  32  27  34  42  60  79        
 90  62  38  22  16  11  18  24  44  68  96    
 82  50  30  14   6   3   8  20  36  56  88    
 69  45  25   9   1   0   4  12  28  48  80    
 81  49  29  13   5   2   7  19  35  55  87    
 89  61  37  21  15  10  17  23  43  67  95    
     70  57  39  31  26  33  41  59  78        
     97  72  63  51  46  53  65  76  99        
             91  83  74  85  93                

编辑2:如果你真的这样做需要 i 为负值,请将 cirlce_around 中的 range(end_x) 替换为 range(-end_x, end_x)功能。

One way for yielding points with increasing distance is to break it down into easy parts, and then merge the results of the parts together. It's rather obvious that itertools.merge should do the merging. The easy parts are columns, because for fixed x the points (x, y) can be ordered by looking at the value of y only.

Below is a (simplistic) implementation of that algorithm. Note that the squared Euclidian distance is used, and that the center point is included. Most importantly, only points (x, y) with x in range(x_end) are considered, but I think that's OK for your use case (where x_end would be n in your notation above).

from heapq import merge
from itertools import count

def distance_column(x0, x, y0):
    dist_x = (x - x0) ** 2
    yield dist_x, (x, y0)
    for dy in count(1):
        dist = dist_x + dy ** 2
        yield dist, (x, y0 + dy)
        yield dist, (x, y0 - dy)

def circle_around(x0, y0, end_x):
    for dist_point in merge(*(distance_column(x0, x, y0) for x in range(end_x))):
        yield dist_point

Edit: Test code:

def show(circle):
    d = dict((p, i) for i, (dist, p) in enumerate(circle))
    max_x = max(p[0] for p in d) + 1
    max_y = max(p[1] for p in d) + 1
    return "\n".join(" ".join("%3d" % d[x, y] if (x, y) in d else "   " for x in range(max_x + 1)) for y in range(max_y + 1))

import itertools
print(show(itertools.islice(circle_around(5, 5, 11), 101)))

Result of test (points are numbered in the order they are yielded by circle_around):

             92  84  75  86  94                
     98  73  64  52  47  54  66  77 100        
     71  58  40  32  27  34  42  60  79        
 90  62  38  22  16  11  18  24  44  68  96    
 82  50  30  14   6   3   8  20  36  56  88    
 69  45  25   9   1   0   4  12  28  48  80    
 81  49  29  13   5   2   7  19  35  55  87    
 89  61  37  21  15  10  17  23  43  67  95    
     70  57  39  31  26  33  41  59  78        
     97  72  63  51  46  53  65  76  99        
             91  83  74  85  93                

Edit 2: If you really do need negative values of i, replace range(end_x) with range(-end_x, end_x) in the cirlce_around function.

秋凉 2025-01-04 13:52:03

如果您遵循 x 和 y 螺旋索引,您会发现它们都可以以递归方式定义。因此,很容易想出一个递归生成正确索引的函数:

def helicalIndices(n):
    num = 0
    curr_x, dir_x, lim_x, curr_num_lim_x = 0, 1, 1, 2
    curr_y, dir_y, lim_y, curr_num_lim_y = -1, 1, 1, 3
    curr_rep_at_lim_x, up_x = 0, 1
    curr_rep_at_lim_y, up_y = 0, 1

    while num < n:
        if curr_x != lim_x:
            curr_x +=  dir_x
        else:
            curr_rep_at_lim_x += 1
            if curr_rep_at_lim_x == curr_num_lim_x - 1:
                if lim_x < 0:
                    lim_x = (-lim_x) + 1
                else:
                    lim_x = -lim_x
                curr_rep_at_lim_x = 0
                curr_num_lim_x += 1
                dir_x = -dir_x
        if curr_y != lim_y:
            curr_y = curr_y + dir_y
        else:
            curr_rep_at_lim_y += 1
            if curr_rep_at_lim_y == curr_num_lim_y - 1:
                if lim_y < 0:
                    lim_y = (-lim_y) + 1
                else:
                    lim_y = -lim_y
                curr_rep_at_lim_y = 0
                curr_num_lim_y += 1
                dir_y = -dir_y
        r = math.sqrt(curr_x*curr_x + curr_y*curr_y)        
        yield (r, (curr_x, curr_y))
        num += 1

    hi = helicalIndices(101)
    plot(hi, "helicalIndices")

helicalIndices

正如您可以从上图,这正是所要求的。

If you follow the x and y helical indices you notice that both of them can be defined in a recursive manner. Therefore, it is quite easy to come up with a function that recursively generates the correct indices:

def helicalIndices(n):
    num = 0
    curr_x, dir_x, lim_x, curr_num_lim_x = 0, 1, 1, 2
    curr_y, dir_y, lim_y, curr_num_lim_y = -1, 1, 1, 3
    curr_rep_at_lim_x, up_x = 0, 1
    curr_rep_at_lim_y, up_y = 0, 1

    while num < n:
        if curr_x != lim_x:
            curr_x +=  dir_x
        else:
            curr_rep_at_lim_x += 1
            if curr_rep_at_lim_x == curr_num_lim_x - 1:
                if lim_x < 0:
                    lim_x = (-lim_x) + 1
                else:
                    lim_x = -lim_x
                curr_rep_at_lim_x = 0
                curr_num_lim_x += 1
                dir_x = -dir_x
        if curr_y != lim_y:
            curr_y = curr_y + dir_y
        else:
            curr_rep_at_lim_y += 1
            if curr_rep_at_lim_y == curr_num_lim_y - 1:
                if lim_y < 0:
                    lim_y = (-lim_y) + 1
                else:
                    lim_y = -lim_y
                curr_rep_at_lim_y = 0
                curr_num_lim_y += 1
                dir_y = -dir_y
        r = math.sqrt(curr_x*curr_x + curr_y*curr_y)        
        yield (r, (curr_x, curr_y))
        num += 1

    hi = helicalIndices(101)
    plot(hi, "helicalIndices")

helicalIndices

As you can see from the image above, this gives exactly what's asked for.

梦初启 2025-01-04 13:52:03

以下是 circle_around() 的基于循环的实现:

def circle_around(x, y):
    r = 1
    i, j = x-1, y-1
    while True:
        while i < x+r:
            i += 1
            yield r, (i, j)
        while j < y+r:
            j += 1
            yield r, (i, j)
        while i > x-r:
            i -= 1
            yield r, (i, j)
        while j > y-r:
            j -= 1
            yield r, (i, j)
        r += 1
        j -= 1
        yield r, (i, j)

Here is a loop based implementation for circle_around():

def circle_around(x, y):
    r = 1
    i, j = x-1, y-1
    while True:
        while i < x+r:
            i += 1
            yield r, (i, j)
        while j < y+r:
            j += 1
            yield r, (i, j)
        while i > x-r:
            i -= 1
            yield r, (i, j)
        while j > y-r:
            j -= 1
            yield r, (i, j)
        r += 1
        j -= 1
        yield r, (i, j)
深居我梦 2025-01-04 13:52:03

虽然我不完全确定你想做什么,但我会这样开始:

def xxx():
    for row in M[i-R:i+R+1]:
        for val in row[j-R:j+r+1]:
            yield val

我不确定你想要的螺旋有多少顺序,这重要吗?它必须是递增的 R 顺序吗?或者也许从特定的方位角开始顺时针?

R 曼哈顿的距离是多少?欧几里得?还有别的东西吗?

Although I'm not entirely sure what you are trying to do, I'd start like this:

def xxx():
    for row in M[i-R:i+R+1]:
        for val in row[j-R:j+r+1]:
            yield val

I'm not sure how much order you want for your spiral, is it important at all? does it have to be in increasing R order? or perhaps clockwise starting at particular azimuth?

What is the distance measure for R, manhattan? euclidean? something else?

゛时过境迁 2025-01-04 13:52:03

我要做的是使用阿基米德螺旋方程:

r(theta) = a + b*theta

然后使用

x = r*cos(theta)
y = r*sin(theta)

cos 和 sin 将极坐标 (r,theta) 转换为 (x,y)位于math 库中。然后将所得的 x 和 y 舍入为整数。您可以随后将 x 和 y 偏移起始索引,以获得数组的最终索引。

但是,如果您只是想找到 f 返回 true 的第一个半径,我认为执行以下伪代码会更有益:

for (i,j) in matrix:
    radius = sqrt( (i-i0)^2 + (j-j0)^2) // (i0,j0) is the "center" of your spiral
    radiuslist.append([radius, (i,j)])
sort(radiuslist) // sort by the first entry in each element, which is the radius
// This will give you a list of each element of the array, sorted by the
// "distance" from it to (i0,j0)
for (rad,indices) in enumerate(radiuslist):
    if f(matrix[indices]):
        // you found the first one, do whatever you want

What I would do is use the equation for an Archimedean spiral:

r(theta) = a + b*theta

and then convert the polar coordinates (r,theta) into (x,y), by using

x = r*cos(theta)
y = r*sin(theta)

cos and sin are in the math library. Then round the resulting x and y to integers. You can offset x and y afterward by the starting index, to get the final indices of the array.

However, if you are just interested in finding the first radius where f returns true, I think it would be more beneficial to do the following pseudocode:

for (i,j) in matrix:
    radius = sqrt( (i-i0)^2 + (j-j0)^2) // (i0,j0) is the "center" of your spiral
    radiuslist.append([radius, (i,j)])
sort(radiuslist) // sort by the first entry in each element, which is the radius
// This will give you a list of each element of the array, sorted by the
// "distance" from it to (i0,j0)
for (rad,indices) in enumerate(radiuslist):
    if f(matrix[indices]):
        // you found the first one, do whatever you want
再见回来 2025-01-04 13:52:03

好吧,我很尴尬,这是我迄今为止想到的最好的。但也许它会对你有帮助。由于它实际上不是循环迭代器,因此我必须接受您的测试函数作为参数。

问题:

  • 未针对跳过数组外部的点进行优化
  • 最近点
  • ,仍使用方形迭代器,但它确实找到了我未使用 numpy 的 ,因此它是为列表列表而设计的。您需要更改的两点已被注释,
  • 我将方形迭代器保留为长形式,以便更容易阅读。它可能会更干燥

这是代码。您问题的关键解决方案是顶层“spiral_search”函数,它在方形螺旋迭代器的顶部添加了一些额外的逻辑,以确保找到最近的点。

from math import sqrt

#constants
X = 0
Y = 1

def spiral_search(array, focus, test):
    """
    Search for the closest point to focus that satisfies test.
    test interface: test(point, focus, array)
    points structure: [x,y] (list, not tuple)
    returns tuple of best point [x,y] and the euclidean distance from focus
    """
    #stop if focus not in array
    if not _point_is_in_array(focus, array): raise IndexError("Focus must be within the array.")
    #starting closest radius and best point
    stop_radius = None
    best_point = None 
    for point in _square_spiral(array, focus):
        #cheap stop condition: when current point is outside the stop radius
        #(don't calculate outside axis where more expensive)
        if (stop_radius) and (point[Y] == 0) and (abs(point[X] - focus[X]) >= stop_radius):
            break #current best point is already as good or better so done
        #otherwise continue testing for closer solutions
        if test(point, focus, array):
            distance = _distance(focus, point)
            if (stop_radius == None) or (distance < stop_radius):
                stop_radius = distance
                best_point = point
    return best_point, stop_radius

def _square_spiral(array, focus):
    yield focus
    size = len(array) * len(array[0]) #doesn't work for numpy
    count = 1
    r_square = 0
    offset = [0,0]
    rotation = 'clockwise'
    while count < size:
        r_square += 1
        #left
        dimension = X
        direction = -1
        for point in _travel_dimension(array, focus, offset, dimension, direction, r_square):
            yield point
            count += 1
        #up
        dimension = Y
        direction = 1
        for point in _travel_dimension(array, focus, offset, dimension, direction, r_square):
            yield point
            count += 1
        #right
        dimension = X
        direction = 1
        for point in _travel_dimension(array, focus, offset, dimension, direction, r_square):
            yield point
            count += 1
        #down
        dimension = Y
        direction = -1
        for point in _travel_dimension(array, focus, offset, dimension, direction, r_square):
            yield point
            count += 1

def _travel_dimension(array, focus, offset, dimension, direction, r_square):
    for value in range(offset[dimension] + direction, direction*(1+r_square), direction):
        offset[dimension] = value
        point = _offset_to_point(offset, focus)
        if _point_is_in_array(point, array):
            yield point

def _distance(focus, point):
    x2 = (point[X] - focus[X])**2
    y2 = (point[Y] - focus[Y])**2
    return sqrt(x2 + y2)

def _offset_to_point(offset, focus):
    return [offset[X] + focus[X], offset[Y] + focus[Y]]

def _point_is_in_array(point, array):
    if (0 <= point[X] < len(array)) and (0 <= point[Y] < len(array[0])): #doesn't work for numpy
        return True
    else:
        return False

Well, I'm pretty embarrassed this is the best I have come up with so far. But maybe it will help you. Since it's not actually a circular iterator, I had to accept your test function as an argument.

Problems:

  • not optimized to skip points outside the array
  • still uses a square iterator, but it does find the closest point
  • i haven't used numpy, so it's made for list of lists. the two points you need to change are commented
  • i left the square iterator in a long form so it's easier to read. it could be more DRY

Here is the code. The key solution to your question is the top level "spiral_search" function which adds some extra logic on top of the square spiral iterator to make sure that the closest point is found.

from math import sqrt

#constants
X = 0
Y = 1

def spiral_search(array, focus, test):
    """
    Search for the closest point to focus that satisfies test.
    test interface: test(point, focus, array)
    points structure: [x,y] (list, not tuple)
    returns tuple of best point [x,y] and the euclidean distance from focus
    """
    #stop if focus not in array
    if not _point_is_in_array(focus, array): raise IndexError("Focus must be within the array.")
    #starting closest radius and best point
    stop_radius = None
    best_point = None 
    for point in _square_spiral(array, focus):
        #cheap stop condition: when current point is outside the stop radius
        #(don't calculate outside axis where more expensive)
        if (stop_radius) and (point[Y] == 0) and (abs(point[X] - focus[X]) >= stop_radius):
            break #current best point is already as good or better so done
        #otherwise continue testing for closer solutions
        if test(point, focus, array):
            distance = _distance(focus, point)
            if (stop_radius == None) or (distance < stop_radius):
                stop_radius = distance
                best_point = point
    return best_point, stop_radius

def _square_spiral(array, focus):
    yield focus
    size = len(array) * len(array[0]) #doesn't work for numpy
    count = 1
    r_square = 0
    offset = [0,0]
    rotation = 'clockwise'
    while count < size:
        r_square += 1
        #left
        dimension = X
        direction = -1
        for point in _travel_dimension(array, focus, offset, dimension, direction, r_square):
            yield point
            count += 1
        #up
        dimension = Y
        direction = 1
        for point in _travel_dimension(array, focus, offset, dimension, direction, r_square):
            yield point
            count += 1
        #right
        dimension = X
        direction = 1
        for point in _travel_dimension(array, focus, offset, dimension, direction, r_square):
            yield point
            count += 1
        #down
        dimension = Y
        direction = -1
        for point in _travel_dimension(array, focus, offset, dimension, direction, r_square):
            yield point
            count += 1

def _travel_dimension(array, focus, offset, dimension, direction, r_square):
    for value in range(offset[dimension] + direction, direction*(1+r_square), direction):
        offset[dimension] = value
        point = _offset_to_point(offset, focus)
        if _point_is_in_array(point, array):
            yield point

def _distance(focus, point):
    x2 = (point[X] - focus[X])**2
    y2 = (point[Y] - focus[Y])**2
    return sqrt(x2 + y2)

def _offset_to_point(offset, focus):
    return [offset[X] + focus[X], offset[Y] + focus[Y]]

def _point_is_in_array(point, array):
    if (0 <= point[X] < len(array)) and (0 <= point[Y] < len(array[0])): #doesn't work for numpy
        return True
    else:
        return False
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文