使用 Python 在 OpenCV 中存储
我想找到图像中的轮廓并进一步处理它们,例如在图像上绘制它们。 为此,我有两个函数在不同的线程中运行:
storage = cv.CreateMemStorage(0)
contour = cv.FindContours(inData.content, storage, cv.CV_RETR_EXTERNAL, cv.CV_CHAIN_APPROX_SIMPLE)
每个
while contours:
bound_rect = cv.BoundingRect(list(contours))
contours = contours.h_next()
pt1 = (bound_rect[0], bound_rect[1])
pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3])
cv.Rectangle(inImg.content, pt1, pt2, cv.CV_RGB(255,0,0), 1)
函数都在一个循环中运行,一个接一个地处理图像。 当一个函数完成后,它将图像放入缓冲区中,其他函数可以从中获取它。 这种方法有效,只是在结果中,轮廓是在图像中相应图像之前的一到两个图像中绘制的。
我认为这与 OpenCV 的存储有关,但我不明白为什么需要存储以及它的作用
编辑这里还有一些代码:
我的程序是一个基于节点的图像分析软件。
这就是我当前代码的节点图的样子:
|---------| |--------|
|-----| |-----|------>|Threshold|--->|Contours|--->|-------------| |------|
|Input|--->|Split| |---------| |--------| |Draw Contours|--->|Output|
|-----| |-----|----------------------------------->|-------------| |------|
这是所有节点派生的类:
from Buffer import Buffer
from threading import Thread
from Data import Data
class Node(Thread):
def __init__(self, inputbuffers, outputbuffers):
Thread.__init__(self)
self.inputbuffers = inputbuffers
self.outputbuffers = outputbuffers
def getInputBuffer(self, index):
return self.inputbuffers[index]
def getOutputBuffer(self, index):
return self.outputbuffers[index]
def _getContents(self, bufferArray):
out = []
for bufferToGet in bufferArray:
if bufferToGet and bufferToGet.data:
out.append(bufferToGet.data)
for bufferToGet in bufferArray:
bufferToGet.data = None
return out
def _allInputsPresent(self):
for bufferToChk in self.inputbuffers:
if not bufferToChk.data:
return False
return True
def _allOutputsEmpty(self):
for bufferToChk in self.outputbuffers:
if bufferToChk.data != None:
return False
return True
def _applyOutputs(self, output):
for i in range(len(output)):
if self.outputbuffers[i]:
self.outputbuffers[i].setData(output[i])
def run(self):
#Thread loop <------------------------------------
while True:
while not self._allInputsPresent(): pass
inputs = self._getContents(self.inputbuffers)
output = [None]*len(self.outputbuffers)
self.process(inputs, output)
while not self._allOutputsEmpty(): pass
self._applyOutputs(output)
def process(self, inputs, outputs):
'''
inputs: array of Data objects
outputs: array of Data objects
'''
pass
节点围绕这些数据对象传递:
class Data(object):
def __init__(self, content = None, time = None, error = None, number = -1):
self.content = content #Here the actual data is stored. Mostly images
self.time = time #Not used yet
self.error = error #Not used yet
self.number = number #Used to see if the correct data is put together
这是节点:
from Node import Node
from Data import Data
import copy
import cv
class TemplateNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inData = inputs[0]
#Do something with the content e.g.
#cv.Smooth(inData.content, inData.content, cv.CV_GAUSSIAN, 11, 11)
outputs[0] = inData
class InputNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(InputNode, self).__init__(inputbuffers, outputbuffers)
self.capture = cv.CaptureFromFile("video.avi")
self.counter = 0
def process(self, inputs, outputs):
image = cv.QueryFrame(self.capture)
if image:
font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 3, 8)
x = 30
y = 50
cv.PutText(image, str(self.counter), (x,y), font, 255)
outputs[0] = Data(image,None,None,self.counter)
self.counter = self.counter+1
class OutputNode(Node):
def __init__(self, inputbuffers, outputbuffers, name):
super(type(self), self).__init__(inputbuffers, outputbuffers)
self.name = name
def process(self, inputs, outputs):
if type(inputs[0].content) == cv.iplimage:
cv.ShowImage(self.name, inputs[0].content)
cv.WaitKey()
class ThresholdNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inData = inputs[0]
inimg = cv.CreateImage(cv.GetSize(inData.content), cv.IPL_DEPTH_8U, 1);
cv.CvtColor(inData.content, inimg, cv.CV_BGR2GRAY)
outImg = cv.CreateImage(cv.GetSize(inimg), cv.IPL_DEPTH_8U, 1);
cv.Threshold(inimg, outImg, 70, 255, cv.CV_THRESH_BINARY_INV);
inData.content = outImg
outputs[0] = inData
class SplitNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inData = inputs[0]
if type(inData.content) == cv.iplimage:
imagecpy = cv.CloneImage(inData.content)
outputs[1] = Data(imagecpy, copy.copy(inData.time), copy.copy(inData.error), copy.copy(inData.number))
else:
outputs[1] = copy.deepcopy(inData)
print
class ContoursNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inData = inputs[0]
storage = cv.CreateMemStorage(0)
contours = cv.FindContours(inData.content, storage, cv.CV_RETR_EXTERNAL, cv.CV_CHAIN_APPROX_SIMPLE)
contoursArr = []
while contours:
points = []
for (x,y) in contours:
points.append((x,y))
contoursArr.append(points)
contours = contours.h_next()
outputs[0] = Data(contoursArr, inData.time, inData.error, inData.number)
pass
class DrawContoursNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inImg = inputs[0]
contours = inputs[1].content
print "Image start"
for cont in contours:
for (x,y) in cont:
cv.Circle(inImg.content, (x,y), 2, cv.CV_RGB(255, 0, 0))
print "Image end"
outputs[0] = inImg
这是主函数。这里创建了所有节点和缓冲区。
from NodeImpls import *
from Buffer import Buffer
buffer1 = Buffer()
buffer2 = Buffer()
buffer3 = Buffer()
buffer4 = Buffer()
buffer5 = Buffer()
buffer6 = Buffer()
innode = InputNode([], [buffer1])
split = SplitNode([buffer1], [buffer2, buffer3])
thresh = ThresholdNode([buffer3], [buffer4])
contours = ContoursNode([buffer4], [buffer5])
drawc = DrawContoursNode([buffer2, buffer5],[buffer6])
outnode = OutputNode([buffer6], [], "out1")
innode.start()
split.start()
thresh.start()
contours.start()
drawc.start()
outnode.start()
while True:
pass
缓冲区:
class Buffer(object):
def __init__(self):
self.data = None
def setData(self, data):
self.data = data
def getData(self):
return self.data
I want to find contours in an image and further process them e.g. drawing them on the image.
To do that I have two functions running in different threads:
storage = cv.CreateMemStorage(0)
contour = cv.FindContours(inData.content, storage, cv.CV_RETR_EXTERNAL, cv.CV_CHAIN_APPROX_SIMPLE)
and
while contours:
bound_rect = cv.BoundingRect(list(contours))
contours = contours.h_next()
pt1 = (bound_rect[0], bound_rect[1])
pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3])
cv.Rectangle(inImg.content, pt1, pt2, cv.CV_RGB(255,0,0), 1)
Each function runs in a loop processing one image after the other.
When a function is done it puts the image in a buffer from which the other function can get it.
This works except that in the result the contours are drawn in the image one or two images before their corresponding image.
I think this has something to do with the storage of OpenCV but I don't understand why the storage is needed and what it does
EDIT Here is some more code:
My program is meant to be a node based image analasys software.
This is how the node graph of my current code looks like:
|---------| |--------|
|-----| |-----|------>|Threshold|--->|Contours|--->|-------------| |------|
|Input|--->|Split| |---------| |--------| |Draw Contours|--->|Output|
|-----| |-----|----------------------------------->|-------------| |------|
This is the class from which all nodes derive:
from Buffer import Buffer
from threading import Thread
from Data import Data
class Node(Thread):
def __init__(self, inputbuffers, outputbuffers):
Thread.__init__(self)
self.inputbuffers = inputbuffers
self.outputbuffers = outputbuffers
def getInputBuffer(self, index):
return self.inputbuffers[index]
def getOutputBuffer(self, index):
return self.outputbuffers[index]
def _getContents(self, bufferArray):
out = []
for bufferToGet in bufferArray:
if bufferToGet and bufferToGet.data:
out.append(bufferToGet.data)
for bufferToGet in bufferArray:
bufferToGet.data = None
return out
def _allInputsPresent(self):
for bufferToChk in self.inputbuffers:
if not bufferToChk.data:
return False
return True
def _allOutputsEmpty(self):
for bufferToChk in self.outputbuffers:
if bufferToChk.data != None:
return False
return True
def _applyOutputs(self, output):
for i in range(len(output)):
if self.outputbuffers[i]:
self.outputbuffers[i].setData(output[i])
def run(self):
#Thread loop <------------------------------------
while True:
while not self._allInputsPresent(): pass
inputs = self._getContents(self.inputbuffers)
output = [None]*len(self.outputbuffers)
self.process(inputs, output)
while not self._allOutputsEmpty(): pass
self._applyOutputs(output)
def process(self, inputs, outputs):
'''
inputs: array of Data objects
outputs: array of Data objects
'''
pass
The nodes pass around these Data objects:
class Data(object):
def __init__(self, content = None, time = None, error = None, number = -1):
self.content = content #Here the actual data is stored. Mostly images
self.time = time #Not used yet
self.error = error #Not used yet
self.number = number #Used to see if the correct data is put together
This are the nodes:
from Node import Node
from Data import Data
import copy
import cv
class TemplateNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inData = inputs[0]
#Do something with the content e.g.
#cv.Smooth(inData.content, inData.content, cv.CV_GAUSSIAN, 11, 11)
outputs[0] = inData
class InputNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(InputNode, self).__init__(inputbuffers, outputbuffers)
self.capture = cv.CaptureFromFile("video.avi")
self.counter = 0
def process(self, inputs, outputs):
image = cv.QueryFrame(self.capture)
if image:
font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 3, 8)
x = 30
y = 50
cv.PutText(image, str(self.counter), (x,y), font, 255)
outputs[0] = Data(image,None,None,self.counter)
self.counter = self.counter+1
class OutputNode(Node):
def __init__(self, inputbuffers, outputbuffers, name):
super(type(self), self).__init__(inputbuffers, outputbuffers)
self.name = name
def process(self, inputs, outputs):
if type(inputs[0].content) == cv.iplimage:
cv.ShowImage(self.name, inputs[0].content)
cv.WaitKey()
class ThresholdNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inData = inputs[0]
inimg = cv.CreateImage(cv.GetSize(inData.content), cv.IPL_DEPTH_8U, 1);
cv.CvtColor(inData.content, inimg, cv.CV_BGR2GRAY)
outImg = cv.CreateImage(cv.GetSize(inimg), cv.IPL_DEPTH_8U, 1);
cv.Threshold(inimg, outImg, 70, 255, cv.CV_THRESH_BINARY_INV);
inData.content = outImg
outputs[0] = inData
class SplitNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inData = inputs[0]
if type(inData.content) == cv.iplimage:
imagecpy = cv.CloneImage(inData.content)
outputs[1] = Data(imagecpy, copy.copy(inData.time), copy.copy(inData.error), copy.copy(inData.number))
else:
outputs[1] = copy.deepcopy(inData)
print
class ContoursNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inData = inputs[0]
storage = cv.CreateMemStorage(0)
contours = cv.FindContours(inData.content, storage, cv.CV_RETR_EXTERNAL, cv.CV_CHAIN_APPROX_SIMPLE)
contoursArr = []
while contours:
points = []
for (x,y) in contours:
points.append((x,y))
contoursArr.append(points)
contours = contours.h_next()
outputs[0] = Data(contoursArr, inData.time, inData.error, inData.number)
pass
class DrawContoursNode(Node):
def __init__(self, inputbuffers, outputbuffers):
super(type(self), self).__init__(inputbuffers, outputbuffers)
def process(self, inputs, outputs):
inImg = inputs[0]
contours = inputs[1].content
print "Image start"
for cont in contours:
for (x,y) in cont:
cv.Circle(inImg.content, (x,y), 2, cv.CV_RGB(255, 0, 0))
print "Image end"
outputs[0] = inImg
This is the main function. Here all the nodes and buffers are created.
from NodeImpls import *
from Buffer import Buffer
buffer1 = Buffer()
buffer2 = Buffer()
buffer3 = Buffer()
buffer4 = Buffer()
buffer5 = Buffer()
buffer6 = Buffer()
innode = InputNode([], [buffer1])
split = SplitNode([buffer1], [buffer2, buffer3])
thresh = ThresholdNode([buffer3], [buffer4])
contours = ContoursNode([buffer4], [buffer5])
drawc = DrawContoursNode([buffer2, buffer5],[buffer6])
outnode = OutputNode([buffer6], [], "out1")
innode.start()
split.start()
thresh.start()
contours.start()
drawc.start()
outnode.start()
while True:
pass
The buffer:
class Buffer(object):
def __init__(self):
self.data = None
def setData(self, data):
self.data = data
def getData(self):
return self.data
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
存储只是一个保存结果的地方。 OpenCV 是一个 C++ 库,依赖于手动内存分配,C++ 风格。 Python 绑定只是它的一个薄包装,并且不太Pythonic。这就是为什么您必须手动分配存储,就像在 C 或 C++ 中那样。
我假设您的线程没有正确同步。这个问题不太可能与 OpenCV 有关,而是与您拥有哪些功能、它们使用和传递哪些数据以及您如何在它们之间共享数据有关。
简而言之,请将您的代码发布在您创建线程并调用这些函数的位置,以及
inImg
、inData
、contour
、contours 的位置
和存储
被访问或修改。Storage is just a place to keep the results. OpenCV is a C++ library, and relies on manual memory allocation, C++ style. Python bindings are just a thin wrapper around it, and are not very pythonic. That's why you have to allocate storage manually, like if you did it in C or in C++.
I assume your threads are not properly synchronized. This problem is not likely to be related to OpenCV, but to what functions you have, what data they use and pass around, and how you share the data between them.
In short, please post your code where you create threads and call these functions, as well where
inImg
,inData
,contour
,contours
andstorage
are accessed or modified.