维特比算法,针对一般情况 Java 的非硬编码
我的任务是使用维特比算法找到句子中最可能的单词序列。 给定的状态序列如下: 我必须引入初始概率和转移概率,然后打印句子中单词最可能的语音部分序列。 输出应该类似于 NPV ART,概率 0.0000123 我已经用Java对其进行了硬编码,但是在不同的数学程序中是否有一般情况或已经准备好的解决方案?谢谢,这是我到目前为止所拥有的:
import java.util.Hashtable;
public class Main
{
//We hard-code start states and consequent observations.
static final String NOUN = "Noun";
static final String ARTICLE = "Article";
static final String VERB = "Verb";
static final String ADJECTIVE = "Adjective";
static final String ADVERB = "Adverb";
public static void main(String[] args)
{
//We put them in array
String[] states = new String[] {NOUN, ARTICLE};
String[] observations = new String[] {VERB, ADJECTIVE, ADVERB};
//Define a hashtable where we’ll keep initial states and their probabilities
Hashtable<String, Float> start_probability = new Hashtable<String, Float>();
start_probability.put(NOUN, 0.6f);
start_probability.put(ARTICLE, 0.4f);
// A hashtable with transition_probabilities which contains initial probablilities
Hashtable<String, Hashtable<String, Float>> transition_probability =
new Hashtable<String, Hashtable<String, Float>>();
Hashtable<String, Float> t1 = new Hashtable<String, Float>();
t1.put(NOUN, 0.7f);
t1.put(ARTICLE, 0.3f);
Hashtable<String, Float> t2 = new Hashtable<String, Float>();
t2.put(NOUN, 0.4f);
t2.put(ARTICLE, 0.6f);
transition_probability.put(NOUN, t1);
transition_probability.put(ARTICLE, t2);
// Here we put hashtables with consequent observed emission_probability
Hashtable<String, Hashtable<String, Float>> emission_probability =
new Hashtable<String, Hashtable<String, Float>>();
Hashtable<String, Float> e1 = new Hashtable<String, Float>();
e1.put(VERB, 0.1f);
e1.put(ADJECTIVE, 0.4f);
e1.put(ADVERB, 0.5f);
Hashtable<String, Float> e2 = new Hashtable<String, Float>();
e2.put(VERB, 0.6f);
e2.put(ADJECTIVE, 0.3f);
e2.put(ADVERB, 0.1f);
emission_probability.put(NOUN, e1);
emission_probability.put(ARTICLE, e2);
//We return the most probabilistic sequence with function forward fiterb described below
Object[] ret = forward_viterbi(observations,
states,
start_probability,
transition_probability,
emission_probability);
System.out.println(((Float) ret[0]).floatValue());
System.out.println((String) ret[1]);
System.out.println(((Float) ret[2]).floatValue());
}
//Function to go
//As argument we get nested hashtables
public static Object[] forward_viterbi(String[] obs, String[] states,
Hashtable<String, Float> start_p,
Hashtable<String, Hashtable<String, Float>> trans_p,
Hashtable<String, Hashtable<String, Float>> emit_p)
{
Hashtable<String, Object[]> T = new Hashtable<String, Object[]>();
for (String state : states)
T.put(state, new Object[] {start_p.get(state), state, start_p.get(state)});
for (String output : obs)
{
Hashtable<String, Object[]> U = new Hashtable<String, Object[]>();
for (String next_state : states)
{
float total = 0;
String argmax = "";
float valmax = 0;
float prob = 1;
String v_path = "";
float v_prob = 1;
for (String source_state : states)
{
Object[] objs = T.get(source_state);
prob = ((Float) objs[0]).floatValue();
v_path = (String) objs[1];
v_prob = ((Float) objs[2]).floatValue();
float p = emit_p.get(source_state).get(output) *
trans_p.get(source_state).get(next_state);
prob *= p;
v_prob *= p;
total += prob;
if (v_prob > valmax)
{
argmax = v_path + "," + next_state;
valmax = v_prob;
}
}
U.put(next_state, new Object[] {total, argmax, valmax});
}
T = U;
}
float total = 0;
String argmax = "";
float valmax = 0;
float prob;
String v_path;
float v_prob;
for (String state : states)
{
Object[] objs = T.get(state);
prob = ((Float) objs[0]).floatValue();
v_path = (String) objs[1];
v_prob = ((Float) objs[2]).floatValue();
total += prob;
if (v_prob > valmax)
{
argmax = v_path;
valmax = v_prob;
}
}
return new Object[]{
total, argmax, valmax
};
}
}
my task is to find the most probable sequences of words in a sentence using viterbi algorithm.
The given sequence of states is here:
I have to introduce initial probabilities and transition probabilities and then print the most likely sequence of parts of the speech the words of the sentence are.
The out should be smth like N P V ART, probability 0.0000123
I've hardcoded it in Java, but is there a general case or already prepared solutions in different MATH programs? thanks, here is what I have so far:
import java.util.Hashtable;
public class Main
{
//We hard-code start states and consequent observations.
static final String NOUN = "Noun";
static final String ARTICLE = "Article";
static final String VERB = "Verb";
static final String ADJECTIVE = "Adjective";
static final String ADVERB = "Adverb";
public static void main(String[] args)
{
//We put them in array
String[] states = new String[] {NOUN, ARTICLE};
String[] observations = new String[] {VERB, ADJECTIVE, ADVERB};
//Define a hashtable where we’ll keep initial states and their probabilities
Hashtable<String, Float> start_probability = new Hashtable<String, Float>();
start_probability.put(NOUN, 0.6f);
start_probability.put(ARTICLE, 0.4f);
// A hashtable with transition_probabilities which contains initial probablilities
Hashtable<String, Hashtable<String, Float>> transition_probability =
new Hashtable<String, Hashtable<String, Float>>();
Hashtable<String, Float> t1 = new Hashtable<String, Float>();
t1.put(NOUN, 0.7f);
t1.put(ARTICLE, 0.3f);
Hashtable<String, Float> t2 = new Hashtable<String, Float>();
t2.put(NOUN, 0.4f);
t2.put(ARTICLE, 0.6f);
transition_probability.put(NOUN, t1);
transition_probability.put(ARTICLE, t2);
// Here we put hashtables with consequent observed emission_probability
Hashtable<String, Hashtable<String, Float>> emission_probability =
new Hashtable<String, Hashtable<String, Float>>();
Hashtable<String, Float> e1 = new Hashtable<String, Float>();
e1.put(VERB, 0.1f);
e1.put(ADJECTIVE, 0.4f);
e1.put(ADVERB, 0.5f);
Hashtable<String, Float> e2 = new Hashtable<String, Float>();
e2.put(VERB, 0.6f);
e2.put(ADJECTIVE, 0.3f);
e2.put(ADVERB, 0.1f);
emission_probability.put(NOUN, e1);
emission_probability.put(ARTICLE, e2);
//We return the most probabilistic sequence with function forward fiterb described below
Object[] ret = forward_viterbi(observations,
states,
start_probability,
transition_probability,
emission_probability);
System.out.println(((Float) ret[0]).floatValue());
System.out.println((String) ret[1]);
System.out.println(((Float) ret[2]).floatValue());
}
//Function to go
//As argument we get nested hashtables
public static Object[] forward_viterbi(String[] obs, String[] states,
Hashtable<String, Float> start_p,
Hashtable<String, Hashtable<String, Float>> trans_p,
Hashtable<String, Hashtable<String, Float>> emit_p)
{
Hashtable<String, Object[]> T = new Hashtable<String, Object[]>();
for (String state : states)
T.put(state, new Object[] {start_p.get(state), state, start_p.get(state)});
for (String output : obs)
{
Hashtable<String, Object[]> U = new Hashtable<String, Object[]>();
for (String next_state : states)
{
float total = 0;
String argmax = "";
float valmax = 0;
float prob = 1;
String v_path = "";
float v_prob = 1;
for (String source_state : states)
{
Object[] objs = T.get(source_state);
prob = ((Float) objs[0]).floatValue();
v_path = (String) objs[1];
v_prob = ((Float) objs[2]).floatValue();
float p = emit_p.get(source_state).get(output) *
trans_p.get(source_state).get(next_state);
prob *= p;
v_prob *= p;
total += prob;
if (v_prob > valmax)
{
argmax = v_path + "," + next_state;
valmax = v_prob;
}
}
U.put(next_state, new Object[] {total, argmax, valmax});
}
T = U;
}
float total = 0;
String argmax = "";
float valmax = 0;
float prob;
String v_path;
float v_prob;
for (String state : states)
{
Object[] objs = T.get(state);
prob = ((Float) objs[0]).floatValue();
v_path = (String) objs[1];
v_prob = ((Float) objs[2]).floatValue();
total += prob;
if (v_prob > valmax)
{
argmax = v_path;
valmax = v_prob;
}
}
return new Object[]{
total, argmax, valmax
};
}
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论