在python中存储100万个键值对的列表

发布于 2024-12-28 05:03:55 字数 9967 浏览 2 评论 0原文

我需要在 python 中存储 100 万个键值对的列表。键将是字符串/整数,而值将是浮点值列表。例如:

{"key":36520193,"value":[[36520193,16.946938],[26384600,14.44005],[27261307,12.467529],[16456022,11.316026],[26045102,8.891106],[148432817,8.043456],[36670593,7.111857],[43959215,7.0957513],[50403486,6.95],[18248919,6.8106747],[27563337,6.629243],[18913178,6.573106],[42229958,5.3193846],[17075840,5.266625],[17466726,5.2223654],[47792759,4.9141016],[83647115,4.6122775],[56806472,4.568034],[16752451,4.39949],[69586805,4.3642135],[23207742,3.9822476],[33517555,3.95],[30016733,3.8994896],[38392637,3.8642135],[16165792,3.6820507],[14895431,3.5713203],[48865906,3.45],[20878230,3.45],[17651847,3.3642135],[24484188,3.1820507],[74869104,3.1820507],[15176334,3.1571069],[50255841,3.1571069],[103712319,3.1571069],[20706319,2.9571068],[33542647,2.95],[17636133,2.95],[66690914,2.95],[19812372,2.95],[21178962,2.95],[37705610,2.8642135],[20812260,2.8642135],[25887809,2.8642135],[18815472,2.8642135],[17405810,2.8642135],[46598192,2.8642135],[20592734,2.6642137],[44971871,2.5],[27610701,2.45],[92788698,2.45],[52164826,2.45],[17425930,2.2],[60194002,2.1642137],[122136476,2.0660255],[205325522,2.0],[117521212,1.9820508],[33953887,1.9820508],[22704346,1.9571068],[26176058,1.9071068],[39512661,1.9071068],[43141485,1.8660254],[16401281,1.7],[31495921,1.7],[14599628,1.7],[74596964,1.5],[55821372,1.5],[109073560,1.4142135],[91897348,1.4142135],[25756071,1.25],[25683960,1.25],[17303288,1.25],[42065448,1.25],[72148532,1.2],[19192100,1.2],[85941613,1.2],[77325396,1.2],[18266218,1.2],[114005403,1.2],[16346823,1.2],[43441850,1.2],[60660643,1.2],[41463847,1.2],[33804454,1.2],[20757729,1.2],[18271440,1.2],[51507708,1.2],[104856807,1.2],[24485743,1.2],[16075381,1.2],[68991517,1.2],[96193545,1.2],[63675003,1.2],[70735999,1.2],[25708416,1.2],[80593161,1.2],[42982108,1.2],[120368215,1.2],[24379982,1.2],[14235673,1.2],[20172395,1.2],[161441314,1.2],[37996201,1.2],[35638883,1.2],[46164502,1.2],[74047763,1.2],[19681494,1.2],[95938476,1.2],[20443787,1.2],[87258609,1.2],[34784832,1.2],[30346151,1.2],[40885516,1.2],[197129344,1.2],[14266331,1.2],[15112466,1.2],[26867986,1.2],[82726479,1.2],[23825810,1.2],[14662121,1.2],[32707312,1.2],[17477917,1.2],[123462351,1.2],[5745462,1.2],[16544178,1.2],[23284384,1.2],[45526985,1.2],[23109303,1.2],[26046257,1.2],[53654203,1.2],[133026438,1.2],[25139051,1.2],[65077694,1.2],[17469289,1.2],[15130494,1.2],[148525895,1.2],[15176360,1.2],[44853617,1.2],[9115332,1.2],[16878570,1.2],[132421452,1.2],[6273762,1.2],[124360757,1.2],[21643452,1.2],[9890492,1.2],[16305494,1.2],[18484474,1.2],[22643607,1.2],[60753586,1.2],[9200012,1.2],[30042254,1.2],[8374622,1.2],[15894834,1.2],[18438022,1.2],[78038442,1.2],[22097386,1.2],[21018755,1.2],[20845703,1.2],[164462136,1.2],[19649167,1.2],[24746288,1.2],[27690898,1.2],[42822760,1.2],[160935289,1.2],[178814456,1.2],[53574205,1.2],[41473578,1.2],[82176632,1.2],[82918057,1.2],[102257360,1.2],[17504315,1.2],[18363508,1.2],[50735431,1.2],[80647070,1.2],[40879040,1.2],[17790497,1.2],[191364080,1.2],[14429823,1.2],[22078893,1.2],[121338184,1.2],[113341318,1.2],[48900101,1.2],[38547066,1.2],[20484157,1.2],[16228699,1.2],[21179292,1.2],[15317594,1.2],[55777010,1.2],[15318882,1.2],[182109160,1.2],[45238537,1.2],[19701986,1.2],[32484918,1.2],[18244358,1.2],[18479513,1.2],[19081775,1.2],[21117305,1.2],[19325724,1.2],[136844568,1.2],[32398651,1.2],[20482993,1.2],[14063937,1.2],[91324381,1.2],[20528275,1.2],[14803917,1.2],[16208245,1.2],[17419051,1.2],[31187903,1.2],[54043787,1.2],[167737676,1.2],[24431712,1.2],[24707301,1.2],[24420092,1.2],[15469536,1.2],[26322385,1.2],[77330594,1.2],[82925252,1.2],[28185335,1.0],[24510384,1.0],[24407244,1.0],[41229669,1.0],[16305330,1.0],[26246555,1.0],[28183026,1.0],[49880016,1.0],[104621640,1.0],[36880083,1.0],[19705747,1.0],[22830942,1.0],[21440766,1.0],[54639609,1.0],[49077908,1.0],[29588859,1.0],[23523447,1.0],[20803216,1.0],[20221159,1.0],[1416611,1.0],[3744541,1.0],[21271656,1.0],[68956490,1.0],[96851347,1.0],[39479083,1.0],[27778893,1.0],[18785448,1.0],[39010580,1.0],[65796371,1.0],[124631720,1.0],[27039286,1.0],[18208354,1.0],[51080209,1.0],[37388787,1.0],[18462037,1.0],[31335156,1.0],[21346320,1.0],[23911410,1.0],[73134924,1.0],[807095,1.0],[44465330,1.0],[16732482,1.0],[37344334,1.0],[734753,1.0],[23006794,1.0],[33549858,1.0],[102693093,1.0],[51219631,1.0],[20695699,1.0],[4081171,1.0],[27268078,1.0],[80116664,1.0],[32959253,1.0],[85772748,1.0],[27109019,1.0],[28706024,1.0],[59701568,1.0],[23559586,1.0],[15693493,1.0],[56908710,1.0],[6541402,1.0],[15855538,1.0],[126169000,1.0],[24044209,1.0],[80700514,1.0],[21500333,1.0],[18431316,1.0],[44496963,1.0],[68475722,1.0],[15202472,1.0],[19329393,1.0],[39706174,1.0],[22464533,1.0],[81945172,1.0],[22101236,1.0],[19140282,1.0],[31206614,1.0],[15429857,1.0],[27711339,1.0],[14939981,1.0],[62591681,1.0],[52551600,1.0],[40359919,1.0],[27828234,1.0],[21414413,1.0],[156132825,1.0],[21586867,1.0],[23456995,1.0],[25434201,1.0],[30107143,1.0],[34441838,1.0],[37908934,1.0],[47010618,1.0],[139903189,1.0],[17833574,1.0],[758608,1.0],[15823236,1.0],[37006875,1.0],[10302152,1.0],[40416155,1.0],[21813730,1.0],[18785600,1.0],[30715906,1.0],[428333,1.0],[22059385,1.0],[15155074,1.0],[11061902,1.0],[1177521,1.0],[20449160,1.0],[197117628,1.0],[42423692,1.0],[24963961,1.0],[19637934,1.0],[35960001,1.0],[43269420,1.0],[43283406,1.0],[20269113,1.0],[59409413,1.0],[25548759,1.0],[23779324,1.0],[21449197,1.0],[14327149,1.0],[15429316,1.0],[16159485,1.0],[18785846,1.0],[67651295,1.0],[28389815,1.0],[19780922,1.0],[23841181,1.0],[78391198,1.0],[60765383,1.0],[37689397,1.0],[6447142,1.0],[31332871,1.0],[30364057,1.0],[14120151,1.0],[16303064,1.0],[23023236,1.0],[103610974,1.0],[108382988,1.0],[19791811,1.0],[17121755,1.0],[46346811,1.0],[45618045,1.0],[25587721,1.0],[25362775,1.0],[20710218,1.0],[20223138,1.0],[21035409,1.0],[101894425,1.0],[38314814,1.0],[24582667,1.0],[21181713,1.0],[15901190,1.0],[18197299,1.0],[38802447,1.0],[19668592,1.0],[14515734,1.0],[16870853,1.0],[16488614,1.0],[95955871,1.0],[14780915,1.0],[21188490,1.0],[24243022,1.0],[27150723,1.0],[29425265,1.0],[36370563,1.0],[36528126,1.0],[43789332,1.0],[82773533,1.0],[19726043,1.0],[20888549,1.0],[30271564,1.0],[14874125,1.0],[121436823,1.0],[56405314,1.0],[46954727,1.0],[25675498,1.0],[12803352,1.0],[23888081,1.0],[18498684,1.0],[38536306,1.0],[22851295,1.0],[20140595,1.0],[22311506,1.0],[31121729,1.0],[53717630,1.0],[100101137,1.0],[24753205,1.0],[24523660,1.0],[19544133,1.0],[20823773,1.0],[22677790,1.0],[15227791,1.0],[57525419,1.0],[28562317,1.0],[9629222,1.0],[24047612,1.0],[30508215,1.0],[59084417,1.0],[71088774,1.0],[142157505,1.0],[15284851,1.0],[17164788,1.0],[17885166,1.0],[18420140,1.0],[19695929,1.0],[20572844,1.0],[23479429,1.0],[26642006,1.0],[43469093,1.0],[50835878,1.0],[172049453,1.0],[20604508,1.0],[21681591,1.0],[20052907,1.0],[21271938,1.0],[17842661,1.0],[6365162,1.0],[18130749,1.0],[19249062,1.0],[24193336,1.0],[25913173,1.0],[28647246,1.0],[26072121,1.0],[14522546,1.0],[16409683,1.0],[18785475,1.0],[28969818,1.0],[52757166,1.0],[7120172,1.0],[112237392,1.0],[116779546,1.0],[57107167,1.0],[26347170,1.0],[26565946,1.0],[44409004,1.0],[21105244,1.0],[14230524,1.0],[44711134,1.0],[101753075,1.0],[783214,1.0],[22885110,1.0],[39367703,1.0],[23042739,1.0],[682903,1.0],[38082423,1.0],[16194263,1.0],[2425151,1.0],[52544275,1.0],[21380763,1.0],[18948541,1.0],[34954261,1.0],[34848331,1.0],[29245563,1.0],[19499974,1.0],[16089776,1.0],[77040291,1.0],[18197476,1.0],[1704551,1.0],[15002838,1.0],[17428652,1.0],[20702626,1.0],[29049111,1.0],[34004383,1.0],[34900333,1.0],[48156959,1.0],[50906836,1.0],[15742480,1.0],[41073372,1.0],[37338814,1.0],[1344951,1.0],[8320242,1.0],[14719153,1.0],[20822636,1.0],[168841922,1.0],[19877186,1.0],[14681605,1.0],[15033883,1.0],[23121582,1.0],[23670204,1.0],[41466869,1.0],[18753325,1.0],[21358050,1.0],[78132538,1.0],[132386271,1.0],[86194654,1.0],[17225211,1.0],[107179714,1.0],[18785430,1.0],[19408059,1.0],[19671129,1.0],[24347716,1.0],[24444592,1.0],[25873045,1.0],[7871252,1.0],[14138300,1.0],[16873300,1.0],[14546496,1.0],[165964253,1.0],[15529287,1.0],[95956928,1.0],[19404587,1.0],[21506437,1.0],[22832029,1.0],[19542638,1.0],[30827536,1.0],[5748622,1.0],[22757990,1.0],[41259253,1.0],[23738945,1.0],[19030602,1.0],[21410102,1.0],[28206360,1.0],[136411179,1.0],[17499805,1.0],[26107245,1.0],[127311408,1.0],[77023233,1.0],[20448733,1.0],[20683840,1.0],[22482597,1.0],[15485441,1.0],[28220280,1.0],[55351351,1.0],[70942325,1.0],[9763482,1.0],[15732001,1.0],[27750488,1.0],[18286352,1.0],[122216533,1.0],[19562228,1.0],[5380672,1.0],[22293700,1.0],[59974874,1.0],[44455025,1.0],[90420314,1.0],[22657153,1.0],[16660662,1.0],[14583400,1.0],[16689545,1.0],[94242867,1.0],[44527648,1.0],[40366319,1.0],[33616007,1.0],[23438958,1.0],[15317676,1.0],[14075928,1.0],[1978331,1.0],[33347901,1.0],[16570090,1.0],[32347966,1.0],[26671992,1.0],[101907019,1.0],[24986014,1.0],[23235056,1.0],[40001164,1.0],[21891032,1.0],[18139329,1.0],[9648652,1.0],[16105942,1.0],[3004231,1.0],[20762929,1.0],[28061932,1.0],[39513172,1.0],[15012305,1.0],[18349404,1.0],[22196210,1.0],[110509537,1.0],[20318494,1.0],[21816984,1.0],[22456686,1.0],[62290422,1.0],[93472506,0.8660254],[52305889,0.70710677],[67337055,0.70710677],[122768292,0.5],[35060854,0.5],[43289205,0.5],[87271142,0.5],[28096898,0.5],[79297090,0.5],[24016107,0.5],[48736472,0.5],[109982897,0.5],[98367357,0.5],[21816847,0.5],[73129588,0.5],[23807734,0.5],[76724998,0.5],[63153228,0.5],[21628966,0.5],[14465428,0.5],[42609851,0.5],[30213342,0.5],[17021966,0.5],[96616361,0.5],[97546740,0.5],[67613930,0.5],[21234391,0.5],[87245558,0.5],[36841912,0.5]]}

我将对此数据结构执行查找。实现我的目的最合适的数据结构是什么?我听说过关于 Redis 的建议。与传统的 python 数据结构相比,它是否值得研究?如果没有,请建议其他机制。

编辑

“值”字段是一个列表列表。大多数情况下,该列表可能最多有 1000 个列表,其中包含一个大小为 2 的列表。

I need to store a list of 1 million key-value pairs in python. The key would be a string/integer while the value would be a list of float values. For example:

{"key":36520193,"value":[[36520193,16.946938],[26384600,14.44005],[27261307,12.467529],[16456022,11.316026],[26045102,8.891106],[148432817,8.043456],[36670593,7.111857],[43959215,7.0957513],[50403486,6.95],[18248919,6.8106747],[27563337,6.629243],[18913178,6.573106],[42229958,5.3193846],[17075840,5.266625],[17466726,5.2223654],[47792759,4.9141016],[83647115,4.6122775],[56806472,4.568034],[16752451,4.39949],[69586805,4.3642135],[23207742,3.9822476],[33517555,3.95],[30016733,3.8994896],[38392637,3.8642135],[16165792,3.6820507],[14895431,3.5713203],[48865906,3.45],[20878230,3.45],[17651847,3.3642135],[24484188,3.1820507],[74869104,3.1820507],[15176334,3.1571069],[50255841,3.1571069],[103712319,3.1571069],[20706319,2.9571068],[33542647,2.95],[17636133,2.95],[66690914,2.95],[19812372,2.95],[21178962,2.95],[37705610,2.8642135],[20812260,2.8642135],[25887809,2.8642135],[18815472,2.8642135],[17405810,2.8642135],[46598192,2.8642135],[20592734,2.6642137],[44971871,2.5],[27610701,2.45],[92788698,2.45],[52164826,2.45],[17425930,2.2],[60194002,2.1642137],[122136476,2.0660255],[205325522,2.0],[117521212,1.9820508],[33953887,1.9820508],[22704346,1.9571068],[26176058,1.9071068],[39512661,1.9071068],[43141485,1.8660254],[16401281,1.7],[31495921,1.7],[14599628,1.7],[74596964,1.5],[55821372,1.5],[109073560,1.4142135],[91897348,1.4142135],[25756071,1.25],[25683960,1.25],[17303288,1.25],[42065448,1.25],[72148532,1.2],[19192100,1.2],[85941613,1.2],[77325396,1.2],[18266218,1.2],[114005403,1.2],[16346823,1.2],[43441850,1.2],[60660643,1.2],[41463847,1.2],[33804454,1.2],[20757729,1.2],[18271440,1.2],[51507708,1.2],[104856807,1.2],[24485743,1.2],[16075381,1.2],[68991517,1.2],[96193545,1.2],[63675003,1.2],[70735999,1.2],[25708416,1.2],[80593161,1.2],[42982108,1.2],[120368215,1.2],[24379982,1.2],[14235673,1.2],[20172395,1.2],[161441314,1.2],[37996201,1.2],[35638883,1.2],[46164502,1.2],[74047763,1.2],[19681494,1.2],[95938476,1.2],[20443787,1.2],[87258609,1.2],[34784832,1.2],[30346151,1.2],[40885516,1.2],[197129344,1.2],[14266331,1.2],[15112466,1.2],[26867986,1.2],[82726479,1.2],[23825810,1.2],[14662121,1.2],[32707312,1.2],[17477917,1.2],[123462351,1.2],[5745462,1.2],[16544178,1.2],[23284384,1.2],[45526985,1.2],[23109303,1.2],[26046257,1.2],[53654203,1.2],[133026438,1.2],[25139051,1.2],[65077694,1.2],[17469289,1.2],[15130494,1.2],[148525895,1.2],[15176360,1.2],[44853617,1.2],[9115332,1.2],[16878570,1.2],[132421452,1.2],[6273762,1.2],[124360757,1.2],[21643452,1.2],[9890492,1.2],[16305494,1.2],[18484474,1.2],[22643607,1.2],[60753586,1.2],[9200012,1.2],[30042254,1.2],[8374622,1.2],[15894834,1.2],[18438022,1.2],[78038442,1.2],[22097386,1.2],[21018755,1.2],[20845703,1.2],[164462136,1.2],[19649167,1.2],[24746288,1.2],[27690898,1.2],[42822760,1.2],[160935289,1.2],[178814456,1.2],[53574205,1.2],[41473578,1.2],[82176632,1.2],[82918057,1.2],[102257360,1.2],[17504315,1.2],[18363508,1.2],[50735431,1.2],[80647070,1.2],[40879040,1.2],[17790497,1.2],[191364080,1.2],[14429823,1.2],[22078893,1.2],[121338184,1.2],[113341318,1.2],[48900101,1.2],[38547066,1.2],[20484157,1.2],[16228699,1.2],[21179292,1.2],[15317594,1.2],[55777010,1.2],[15318882,1.2],[182109160,1.2],[45238537,1.2],[19701986,1.2],[32484918,1.2],[18244358,1.2],[18479513,1.2],[19081775,1.2],[21117305,1.2],[19325724,1.2],[136844568,1.2],[32398651,1.2],[20482993,1.2],[14063937,1.2],[91324381,1.2],[20528275,1.2],[14803917,1.2],[16208245,1.2],[17419051,1.2],[31187903,1.2],[54043787,1.2],[167737676,1.2],[24431712,1.2],[24707301,1.2],[24420092,1.2],[15469536,1.2],[26322385,1.2],[77330594,1.2],[82925252,1.2],[28185335,1.0],[24510384,1.0],[24407244,1.0],[41229669,1.0],[16305330,1.0],[26246555,1.0],[28183026,1.0],[49880016,1.0],[104621640,1.0],[36880083,1.0],[19705747,1.0],[22830942,1.0],[21440766,1.0],[54639609,1.0],[49077908,1.0],[29588859,1.0],[23523447,1.0],[20803216,1.0],[20221159,1.0],[1416611,1.0],[3744541,1.0],[21271656,1.0],[68956490,1.0],[96851347,1.0],[39479083,1.0],[27778893,1.0],[18785448,1.0],[39010580,1.0],[65796371,1.0],[124631720,1.0],[27039286,1.0],[18208354,1.0],[51080209,1.0],[37388787,1.0],[18462037,1.0],[31335156,1.0],[21346320,1.0],[23911410,1.0],[73134924,1.0],[807095,1.0],[44465330,1.0],[16732482,1.0],[37344334,1.0],[734753,1.0],[23006794,1.0],[33549858,1.0],[102693093,1.0],[51219631,1.0],[20695699,1.0],[4081171,1.0],[27268078,1.0],[80116664,1.0],[32959253,1.0],[85772748,1.0],[27109019,1.0],[28706024,1.0],[59701568,1.0],[23559586,1.0],[15693493,1.0],[56908710,1.0],[6541402,1.0],[15855538,1.0],[126169000,1.0],[24044209,1.0],[80700514,1.0],[21500333,1.0],[18431316,1.0],[44496963,1.0],[68475722,1.0],[15202472,1.0],[19329393,1.0],[39706174,1.0],[22464533,1.0],[81945172,1.0],[22101236,1.0],[19140282,1.0],[31206614,1.0],[15429857,1.0],[27711339,1.0],[14939981,1.0],[62591681,1.0],[52551600,1.0],[40359919,1.0],[27828234,1.0],[21414413,1.0],[156132825,1.0],[21586867,1.0],[23456995,1.0],[25434201,1.0],[30107143,1.0],[34441838,1.0],[37908934,1.0],[47010618,1.0],[139903189,1.0],[17833574,1.0],[758608,1.0],[15823236,1.0],[37006875,1.0],[10302152,1.0],[40416155,1.0],[21813730,1.0],[18785600,1.0],[30715906,1.0],[428333,1.0],[22059385,1.0],[15155074,1.0],[11061902,1.0],[1177521,1.0],[20449160,1.0],[197117628,1.0],[42423692,1.0],[24963961,1.0],[19637934,1.0],[35960001,1.0],[43269420,1.0],[43283406,1.0],[20269113,1.0],[59409413,1.0],[25548759,1.0],[23779324,1.0],[21449197,1.0],[14327149,1.0],[15429316,1.0],[16159485,1.0],[18785846,1.0],[67651295,1.0],[28389815,1.0],[19780922,1.0],[23841181,1.0],[78391198,1.0],[60765383,1.0],[37689397,1.0],[6447142,1.0],[31332871,1.0],[30364057,1.0],[14120151,1.0],[16303064,1.0],[23023236,1.0],[103610974,1.0],[108382988,1.0],[19791811,1.0],[17121755,1.0],[46346811,1.0],[45618045,1.0],[25587721,1.0],[25362775,1.0],[20710218,1.0],[20223138,1.0],[21035409,1.0],[101894425,1.0],[38314814,1.0],[24582667,1.0],[21181713,1.0],[15901190,1.0],[18197299,1.0],[38802447,1.0],[19668592,1.0],[14515734,1.0],[16870853,1.0],[16488614,1.0],[95955871,1.0],[14780915,1.0],[21188490,1.0],[24243022,1.0],[27150723,1.0],[29425265,1.0],[36370563,1.0],[36528126,1.0],[43789332,1.0],[82773533,1.0],[19726043,1.0],[20888549,1.0],[30271564,1.0],[14874125,1.0],[121436823,1.0],[56405314,1.0],[46954727,1.0],[25675498,1.0],[12803352,1.0],[23888081,1.0],[18498684,1.0],[38536306,1.0],[22851295,1.0],[20140595,1.0],[22311506,1.0],[31121729,1.0],[53717630,1.0],[100101137,1.0],[24753205,1.0],[24523660,1.0],[19544133,1.0],[20823773,1.0],[22677790,1.0],[15227791,1.0],[57525419,1.0],[28562317,1.0],[9629222,1.0],[24047612,1.0],[30508215,1.0],[59084417,1.0],[71088774,1.0],[142157505,1.0],[15284851,1.0],[17164788,1.0],[17885166,1.0],[18420140,1.0],[19695929,1.0],[20572844,1.0],[23479429,1.0],[26642006,1.0],[43469093,1.0],[50835878,1.0],[172049453,1.0],[20604508,1.0],[21681591,1.0],[20052907,1.0],[21271938,1.0],[17842661,1.0],[6365162,1.0],[18130749,1.0],[19249062,1.0],[24193336,1.0],[25913173,1.0],[28647246,1.0],[26072121,1.0],[14522546,1.0],[16409683,1.0],[18785475,1.0],[28969818,1.0],[52757166,1.0],[7120172,1.0],[112237392,1.0],[116779546,1.0],[57107167,1.0],[26347170,1.0],[26565946,1.0],[44409004,1.0],[21105244,1.0],[14230524,1.0],[44711134,1.0],[101753075,1.0],[783214,1.0],[22885110,1.0],[39367703,1.0],[23042739,1.0],[682903,1.0],[38082423,1.0],[16194263,1.0],[2425151,1.0],[52544275,1.0],[21380763,1.0],[18948541,1.0],[34954261,1.0],[34848331,1.0],[29245563,1.0],[19499974,1.0],[16089776,1.0],[77040291,1.0],[18197476,1.0],[1704551,1.0],[15002838,1.0],[17428652,1.0],[20702626,1.0],[29049111,1.0],[34004383,1.0],[34900333,1.0],[48156959,1.0],[50906836,1.0],[15742480,1.0],[41073372,1.0],[37338814,1.0],[1344951,1.0],[8320242,1.0],[14719153,1.0],[20822636,1.0],[168841922,1.0],[19877186,1.0],[14681605,1.0],[15033883,1.0],[23121582,1.0],[23670204,1.0],[41466869,1.0],[18753325,1.0],[21358050,1.0],[78132538,1.0],[132386271,1.0],[86194654,1.0],[17225211,1.0],[107179714,1.0],[18785430,1.0],[19408059,1.0],[19671129,1.0],[24347716,1.0],[24444592,1.0],[25873045,1.0],[7871252,1.0],[14138300,1.0],[16873300,1.0],[14546496,1.0],[165964253,1.0],[15529287,1.0],[95956928,1.0],[19404587,1.0],[21506437,1.0],[22832029,1.0],[19542638,1.0],[30827536,1.0],[5748622,1.0],[22757990,1.0],[41259253,1.0],[23738945,1.0],[19030602,1.0],[21410102,1.0],[28206360,1.0],[136411179,1.0],[17499805,1.0],[26107245,1.0],[127311408,1.0],[77023233,1.0],[20448733,1.0],[20683840,1.0],[22482597,1.0],[15485441,1.0],[28220280,1.0],[55351351,1.0],[70942325,1.0],[9763482,1.0],[15732001,1.0],[27750488,1.0],[18286352,1.0],[122216533,1.0],[19562228,1.0],[5380672,1.0],[22293700,1.0],[59974874,1.0],[44455025,1.0],[90420314,1.0],[22657153,1.0],[16660662,1.0],[14583400,1.0],[16689545,1.0],[94242867,1.0],[44527648,1.0],[40366319,1.0],[33616007,1.0],[23438958,1.0],[15317676,1.0],[14075928,1.0],[1978331,1.0],[33347901,1.0],[16570090,1.0],[32347966,1.0],[26671992,1.0],[101907019,1.0],[24986014,1.0],[23235056,1.0],[40001164,1.0],[21891032,1.0],[18139329,1.0],[9648652,1.0],[16105942,1.0],[3004231,1.0],[20762929,1.0],[28061932,1.0],[39513172,1.0],[15012305,1.0],[18349404,1.0],[22196210,1.0],[110509537,1.0],[20318494,1.0],[21816984,1.0],[22456686,1.0],[62290422,1.0],[93472506,0.8660254],[52305889,0.70710677],[67337055,0.70710677],[122768292,0.5],[35060854,0.5],[43289205,0.5],[87271142,0.5],[28096898,0.5],[79297090,0.5],[24016107,0.5],[48736472,0.5],[109982897,0.5],[98367357,0.5],[21816847,0.5],[73129588,0.5],[23807734,0.5],[76724998,0.5],[63153228,0.5],[21628966,0.5],[14465428,0.5],[42609851,0.5],[30213342,0.5],[17021966,0.5],[96616361,0.5],[97546740,0.5],[67613930,0.5],[21234391,0.5],[87245558,0.5],[36841912,0.5]]}

I would be performing lookups on this data structure. What would be the most appropriate data structure to achieve my purpose? I have heard recommendations about Redis. Would it be worth looking into it rather than the traditional python data structure? If not, please suggest other mechanisms.

Edit

The 'value' field is a list of lists. Most cases, the list may be upto 1000 lists consisting of a size-2 list.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

只为一人 2025-01-04 05:03:55

Redis 适合以下情况:

  • 您希望在应用程序的多个进程或实例之间共享队列。
  • 您希望数据是持久的,因此如果您的应用程序出现故障,它可以从中断的地方继续。
  • 您想要一个超级快速、简单的解决方案。
  • 内存使用情况是一个问题。

我不确定最后一个,但我猜测在 Python 中使用 dict 或其他一些集合类型可能比将所有键/值存储在单个 Redis 中具有更高的内存占用哈希。

更新

我通过在内存和 Redis 中存储示例数组 100 万次来测试内存使用情况。将所有值存储在 Redis 哈希中需要序列化数组。我选择了 json 序列化,但这很容易成为 Redis 支持的更高效的二进制格式。

  • Ruby Hash(应与 Python 的 dict 相当)中提供的数组的 100 万个副本,使用类似于所示的整数键进行索引。内存使用量增加了约 350mb(类似于 @gnibbler 的 python 结果)。
  • 数组的 100 万个副本,序列化为使用相同数字索引的 Redis 哈希中的 JSON 字符串。内存使用量增加了约 250mb。

两者都非常快,当我测量 10,000 次随机查找与针对本机集合的随机查找时,Redis 稍快一些。我知道它不是Python,但这至少应该是说明性的。

另外,为了回答 OP 的其他问题,Redis 可以轻松处理非常大的字符串值。目前它的最大字符串大小为 512mb

Redis would be appropriate if...

  • You want to share the queue between multiple processes or instances of your app.
  • You want the data to be persistent, so if your app goes down it can pick up where it left off.
  • You want a super fast, easy solution.
  • Memory usage is a concern.

I'm not sure on the last one, but I'm guessing using dict or some other collection type in Python is likely to have a higher memory footprint than storing all your key/values in a single Redis hash.

update

I tested the memory usage by storing the example array 1 million times both in memory and in redis. Storing all the values in a Redis hash requires serializing the array. I chose json serialization, but this could have easily been a more efficient binary format, which redis supports.

  • 1 million copies of the array provided in a Ruby Hash (should be comparable to Python's dict) indexed using an integer key similar to the one shown. Memory usage increased by ~350mb (similar to the python results by @gnibbler).
  • 1 million copies of the array, serialized to a JSON string in a redis hash indexed using the same numbers. Memory usage increased by ~250mb.

Both were very fast, with the Redis being slightly faster when I measured 10,000 random lookups vs random lookups against the native collection. I know it's not Python, but this should be at least illustrative.

Also, to answer the OPs other concern, Redis has no trouble handing very large string values. It's max string size is currently 512mb

只是一片海 2025-01-04 05:03:55

花费 ~350MB 来创建确实不应该是一个问题

>>> d=dict((str(n), range(20)) for n in range(1000000))

。当然,您的键/值可能会大得多

Really shouldn't be a problem

>>> d=dict((str(n), range(20)) for n in range(1000000))

took ~350MB to create. Your keys/values may be much larger of course

如梦亦如幻 2025-01-04 05:03:55

我研究了 NumPy 和 Redis 中的存储。

首先,NumPy:

>>> import numpy as NP
>>> K = NP.random.randint(1000, 9999, 1e6)
>>> V = 5 * NP.random.rand(2e6).reshape(-1, 2)

>>> kv = K.nbytes + V.nbytes
>>> '{:15,d}'.format(kv)
>>> '      2,400,000'     # 2.4 MB 

现在 redis:

我将值表示为字符串,这在 redis 中应该非常高效。

>>> from redis import Redis   # using the python client for redis

>>> # w/ a server already running:
>>> r0 = Redis(db=0)

>>> for i in range(K.shape[0]) :
        v = ' '.join(NP.array(V[i], dtype=str).tolist())
        r0.set(K[i], v)

>>> # save db to disk asynchronously, then shut down the server
>>> r0.shutdown()

Redis 数据库(.rdb 文件)为2.9 MB

当然,这不是“同类”比较,因为我选择了我认为最自然的模型来表示 OP 的数据在每个库中 - 即,redis字符串)比 NumPy(2 元素 NumPy 数组)。

I looked at storage in NumPy and also in redis.

First, NumPy:

>>> import numpy as NP
>>> K = NP.random.randint(1000, 9999, 1e6)
>>> V = 5 * NP.random.rand(2e6).reshape(-1, 2)

>>> kv = K.nbytes + V.nbytes
>>> '{:15,d}'.format(kv)
>>> '      2,400,000'     # 2.4 MB 

Now redis:

I represented the values as strings, which should be very efficient in redis.

>>> from redis import Redis   # using the python client for redis

>>> # w/ a server already running:
>>> r0 = Redis(db=0)

>>> for i in range(K.shape[0]) :
        v = ' '.join(NP.array(V[i], dtype=str).tolist())
        r0.set(K[i], v)

>>> # save db to disk asynchronously, then shut down the server
>>> r0.shutdown()

The redis database (.rdb file) is 2.9 MB

Of course, this is not an "apples-to-apples" comparison because i chose what i believed to be the most natural model to represent the OP's data in each library--i.e., redis (strings) than for NumPy (2-element NumPy array).

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文