在不同的音频文件中搜索相同的短样本
考虑多个(至少两个)不同的音频文件,例如几种不同的混音或混音。我天真地说,必须能够检测到两个或多个文件中几乎相等的样本,尤其是人声,当然只有这样,如果人声样本没有被修改、拉伸、音高、混响太多的话等等。
那么可以用什么样的算法或技术来完成呢?比方说,用户会尝试在所有文件中设置最好的时间标记,这些标记描述要比较的数据窗口,包含可能相同的声音、人声等。
我知道没有直接的方法,试图以任何方式直接比较 wav 数据很有用。但即使我有频域数据(例如来自 FFT),我也必须使用一种比较算法,该算法可以通过时间尺度移动比较窗口,因为我不能假设我想要找到的样本是时间同步的覆盖所有文件。
预先感谢您的任何建议。
Consider multiple (at least two) different audio-files, like several different mixes or remixes. Naively I would say, it must be possible to detect samples, especially the vocals, that are almost equal in two or more of the files, of course only then, if the vocal samples aren't modified, stretched, pitched, reverbed too much etc.
So with what kind of algorithm or technique this could be done? Let's say, the user would try to set time markers in all files best possible, which describe the data windows to compare, containing the presumably equal sounds, vocals etc.
I know that no direct approach, trying to directly compare wav data in any way is useful. But even if I have the frequency domain data (e.g. from FFT), I would have to use a comparison algorithm that kind of shifts the comparing-windows through time scale, since I cannot assume the samples, I want to find, are time sync over all files.
Thanks in advance for any suggestions.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
嗨,这是可能的!
您可以使用一种称为 LSH(局部敏感哈希)的技术,该技术非常稳健。
另一种方法是尝试在音频文件中进行频谱图分析...
构建数据库歌曲
匹配歌曲
您可以在此处查看如何制作..
http://translate.google.com/translate?hl=EN&sl=pt&u=http://ederwander.wordpress.com/2011/05/09/audio-fingerprint-em- python/
ederwander
Hi this is possible !!
You can use one technique called LSH (locality sensitive hashing), is very robust.
another way to do this is try make spectrogram analysis in your audio files ...
Construct database song
Match the song
you can see here how make ..
http://translate.google.com/translate?hl=EN&sl=pt&u=http://ederwander.wordpress.com/2011/05/09/audio-fingerprint-em-python/
ederwander