证明任意 a > b > 0,b^n 在 Big-O a^n 中

发布于 2024-12-27 09:20:26 字数 181 浏览 0 评论 0原文

证明对于任何实数,a, b 使得 a > b> 0,b^n 是 O(a^n),n >=1。

我搜索了我拥有的几本有关离散数学的教科书,并在网上搜索了一些与此证明相关的类似示例或定理。我并不是在寻找直接的解决方案,但也许会向我展示正确的方法或范式来解决证明。

Prove that for any real numbers, a, b such that a > b > 0, b^n is O(a^n), n >=1.

I have searched several textbooks I own on Discrete Mathematics as well as several online searches for any examples that are similar or theorems that related to this proof. I am not looking for a direct solution, but perhaps being shown the right methods or paradigms to solve the proof.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

十二 2025-01-03 09:20:26

如果您的意思是

Prove that for any real numbers, a, b such that a > b > 0, b^n is O(a^n)

O(a^n) 的定义

那么,请考虑wiki 中的

1) For f(x), g(x) defined on a subset of reals
2) if there exists some positive **constant** M and real number x_0, such that
3) if ABS(f(x)) <= M * ABS(g(x)) for all x > x_0

在本例中,f(x) = b^xg(x) = a^x。我将把这个问题当作一个家庭作业问题来对待,即使它没有被标记为一个问题......如果我错了,请纠正我!

考虑将函数插入到步骤(尤其是 3)中,看看是否可以找出任何 x_0, M 对,它是正确的。祝你好运!


编辑
我将 f(x) = b^ng(x) = a^n 更改为 f(x) = b^xg(x) = a^x


编辑 - 提示

步骤 3) 可以解释为:

ABS(f(x)) / ABS(g(x)) <= M for all x > x_0

选择您最喜欢的常数 M,然后看看您是否可以找到一些对所有都有效的x_0 x。

If you mean

Prove that for any real numbers, a, b such that a > b > 0, b^n is O(a^n)

Then, think about the definition of O(a^n)

From wiki,

1) For f(x), g(x) defined on a subset of reals
2) if there exists some positive **constant** M and real number x_0, such that
3) if ABS(f(x)) <= M * ABS(g(x)) for all x > x_0

In this case f(x) = b^x and g(x) = a^x. I'm going to treat this question as if it's a homework question, even though it isn't tagged as one...please correct me if I'm wrong!

Consider plugging the funciton into the steps (especially 3) and see if you can figure out any x_0, M pair for which it is true. Good luck!


EDIT
I changed f(x) = b^n and g(x) = a^n to f(x) = b^x and g(x) = a^x


EDIT - HINT

Step 3) can be interpreted as:

ABS(f(x)) / ABS(g(x)) <= M for all x > x_0

Choose your favorite constant M and then see if you can find some x_0 which works for all x.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文