证明任意 a > b > 0,b^n 在 Big-O a^n 中
证明对于任何实数,a, b 使得 a > b> 0,b^n 是 O(a^n),n >=1。
我搜索了我拥有的几本有关离散数学的教科书,并在网上搜索了一些与此证明相关的类似示例或定理。我并不是在寻找直接的解决方案,但也许会向我展示正确的方法或范式来解决证明。
Prove that for any real numbers, a, b such that a > b > 0, b^n is O(a^n), n >=1.
I have searched several textbooks I own on Discrete Mathematics as well as several online searches for any examples that are similar or theorems that related to this proof. I am not looking for a direct solution, but perhaps being shown the right methods or paradigms to solve the proof.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
如果您的意思是
O(a^n)
的定义那么,请考虑wiki 中的 ,
在本例中,
f(x) = b^x
和g(x) = a^x
。我将把这个问题当作一个家庭作业问题来对待,即使它没有被标记为一个问题......如果我错了,请纠正我!考虑将函数插入到步骤(尤其是 3)中,看看是否可以找出任何 x_0, M 对,它是正确的。祝你好运!
编辑
我将
f(x) = b^n
和g(x) = a^n
更改为f(x) = b^x
并g(x) = a^x
编辑 - 提示
步骤 3) 可以解释为:
选择您最喜欢的常数
M
,然后看看您是否可以找到一些对所有都有效的
x_0
x。If you mean
Then, think about the definition of
O(a^n)
From wiki,
In this case
f(x) = b^x
andg(x) = a^x
. I'm going to treat this question as if it's a homework question, even though it isn't tagged as one...please correct me if I'm wrong!Consider plugging the funciton into the steps (especially 3) and see if you can figure out any x_0, M pair for which it is true. Good luck!
EDIT
I changed
f(x) = b^n
andg(x) = a^n
tof(x) = b^x
andg(x) = a^x
EDIT - HINT
Step 3) can be interpreted as:
Choose your favorite constant
M
and then see if you can find somex_0
which worksfor all x
.