多边形索引列表中的相邻多边形
我有一个类似于 this 的网格。 末尾有代表每个多边形的索引列表。我需要为每个多边形生成相邻多边形的列表,并且想知道是否有人知道执行此操作的有效算法?
我想到的最简单的方法是对于每个多边形,检查其他每个多边形是否有两个匹配的索引 - 但这看起来涉及一些嵌套循环。我不介意使用这个,性能在这里不是一个大问题,但是是的,我只是在寻找替代方案。
每个多边形的最大索引/顶点没有任何限制,但为了简单起见,我们假设其为 3(因此三角形多边形)。
感谢您的帮助! :)
I have a mesh in a form like this.
with a list of indices representing each polygon at the end. I need to generate a list of neighboring polygons for each polygon, and was wondering if anyone knows of an efficient algorithm to do this?
The simplest way that comes to mind is for each polygon, check if every other polygon has two matching indices - but this looks like it involves a few nested loops. I don't mind using this, performance isn't a huge issue here, but yeah I'm just scouting for alternatives.
There isnt any limitation on the max indices/vertices per polygon, but for simplicity's sake, lets just assume its 3 (so triangle polygons).
Thanks for any help! :)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
哎哟,XML 网格:)。
我实际上仔细研究了这个,我的第一个答案很懒。你可以写得更好(如上面发布的),而且没那么复杂,我不会花 40 美元买一篇关于这个的期刊文章。这是一个应该适合您的伪代码解决方案。
注意:当我说表时,我的意思是“查找表”。
假设每个三角形都已编号并由顶点 v1、v2、v3 组成,这些顶点具有唯一编号并且可以使用 << 进行比较。运算符(这样我们可以获得唯一的组合键)。
我们需要两个查找表:
一个表告诉我们哪些三角形使用给定的边,另一个表告诉我们给定的三角形由哪些边组成。我们按如下方式构建这些列表:
使用这些列表,我们可以获取给定三角形中的边,将它们用作边表中的键,并查看哪些多边形共享该边。因此,相邻的三角形。因此,对于三角形 t,我们可以执行以下操作:
这是“相邻等于共享三角形 t 的第 0 条边的三角形列表”的伪代码,其中第 0 条边只是第一个。
我们使用 min、median 和 max 来确保相同的边不会有不同的条目:例如 {v1, v2} 和 {v2, v1},其中 v1 和 v2 是两个顶点。我们实际上可以忽略这一点并添加一个“紧凑”步骤,其中我们连接与边缘列表中的不同条目相对应但实际上对应于相同边缘的列表。
另一个可能的问题是,如果您有两条重合但不共享公共顶点的边。在这种情况下,您可以将任一边简化为参数方程,比较它们的重合度,并形成一个查找表,告诉您对于给定边,哪些边是重合的,因此映射:
我们还使用另一个查找表,因为我们无法连接边->面表。考虑边 e1 和 e2 是否相邻,则 e2 和 e3 相邻,但 e1 和 e3 不相邻。如果我们将边->面列表中的 e1、e2 和 e3 条目连接起来,您最终会得到一些非常不正确的数据。这可能比你想做的多一点,但这是我今天早上必须解决的问题:)。
在每条边最多只能对应2个三角形的情况下,我们可以取消传统意义上的“列表”,我们可以追加,并使用大小为2的固定大小的数组。这将减少你的内存开销并提高记忆效率。所以我们的边表更类似于:
无论如何,基本算法可以扩展到具有任意数量边的任意数量的多边形(所有多边形之间不一定相同),并且相对于三角形(或一般情况下的多边形)的数量来说是 O(N) 时间。空间复杂度为 O(E + N),其中 E 是边,N 是多边形的数量。假设您有良好的哈希算法,查找时间应该接近 O(1)。
Ouch, XML meshes :).
I actually had a good look at this, my first answer was pretty lazy. you can write better (as posted above), and it's not that complicated, I wouldn't fork out $40 for a journal article over this. Here's a pseudo-code solution which should work for you.
Note: When I say table, I mean 'lookup table'.
Assume each triangle is numbered and composed of vertices, v1, v2, v3, which are uniquely numbered and can be compared using the < operator (so we can obtain unique key-combinations).
We need two look-up tables:
A table which tells us which triangles use a given edge, and another which tells us which edges a a given triangle is comprised of. We build these lists as follows:
Using these lists, we can take the edges in a given triangle, use these as the key into the edge table, and see which polygons share that edge. Thus, the adjacent triangles. So for a triangle t we could do the following:
which is pseudo-code for 'adjacent is equal to the list of triangles that share the 0th edge of the triangle t', where 0th is just the first.
We use min, median and max to make sure that that we don't have different entries for identical edges: for example {v1, v2} and {v2, v1}, where v1 and v2 are two vertices. We could actually ignore this and add a 'compact' step, where we concatenate lists which correspond to different entries in our edge list but actually correspond to the same edge.
One other possible problem with this is if you have two edges which are coincident but don't share common vertices. In this case, you could reduce either edge to a parametric equation, compare them for coincidence, and form a lookup table which tells you, for a given edge, which edges are coincident, so map:
We use yet another look-up table because we can't concatenate the edge->faces table. Cosider if edges e1 and e2 are adjacent, e2 and e3 are, but e1 and e3 aren't. if we concatenated the e1, e2 and e3 entries in the edge->face list, you'd end up with some wildly incorrect data. This a probably bit more than you want to do, but it's the problem I had to solve this morning :).
In the case where each edge can only correspond to at most 2 triangles, we can do away with the 'list' in the traditional sense that we can append, and use a fixed-size array of size 2. This will reduce your memory overhead and improve memory efficiency. so our edge table would be more akin to:
Anyway, the basic algorithm is extensible to any number of polygons with any number of edges (not necessarily the same between all polygons), and is O(N) time with respect to the number of triangles (or polygons in the general case). Space complexity is O(E + N) Where E is edges and N is the number of polygons. The look-up time should be close to O(1), assuming you have good hashing algorithms.
如果您只对三角网格(或 n-D 中的任何单纯形)感兴趣,那么实际上有更快的解决方案!您提出的建议的时间复杂度为 O(k^2),其中 k 是三角形的数量。这意味着对于大量三角形,计算邻居所需的时间成倍增加,这在大多数情况下在计算上是令人望而却步的。
我建议您阅读 Ueng 和 Sikorski 的文章(“关于构建 3D FEA 数据邻接图的线性时间算法的说明”,视觉计算机 12:pp 445-450,1996)。作者解释了用于查找四面体网格中的邻居的线性时间算法 O(k),从中您可以轻松推导出三角网格的类似算法。也许您也可以将其扩展到一般多边形!
让我知道这是否适合您!
Provided that you are solely interested in triangulized meshes (or any simplex in n-D), there actually are faster solutions! The time complexity of the suggestion you make is O(k^2), where k is the number of triangles. This means that for a large number of triangles the time needed to compute the neighbors increases quadratic, which is computationally prohibitive in most situations.
I would suggest you read the article of Ueng and Sikorski ("A note on a linear time algorithm for constructing adjacency graphs of 3D FEA data", The Visual Computer 12: pp. 445-450, 1996). The authors explain a linear time algorithm O(k) for finding the neighbors in a tetrahedral mesh, from which you can easily deduce a similar algorithm for triangulized meshes. Perhaps you will be able to expand this to general polygons as well!
Let me know if this works for you!
如果没有预先计算的数据,就不可能比循环遍历所有面更快。
对于预先计算的数据,每个顶点保存使用它的面列表就足够了。查找邻居是通过 2 个顶点的相交面列表来完成的。
Without precomputed data it is not possible to do it faster than looping through all faces.
For precomputed data it is enough for each vertex to hold a list of faces where it is used. Finding neighbors is done with intersecting face lists of 2 vertices.