相关值表
如果运行以下代码,您最终将得到一个元胞数组,该元胞数组由 CovMatrix(:,3)
中的相关值和用于计算 CovMatrix( :,1)
和 CovMatrix(:,2)
:
clear all
FieldName = {'Name1','Name2','Name3','Name4','Name5'};
Data={rand(12,1),rand(12,1),rand(12,1),rand(12,1),rand(12,1)};
DataCell = [FieldName;Data];%place in a structure - this is the same
%structure that the data for the lakes will be placed in.
DataStructure = struct(DataCell{:});
FieldName = fieldnames(DataStructure);
Combinations = nchoosek (1:numel(FieldName),2);
d1 = cell2mat(struct2cell(DataStructure)');%this will be the surface temperatures
%use the combinations found in 'Combinations' to define which elements to
%use in calculating the coherence.
R = cell(1,size(Combinations,1));%pre-allocate the cell array
Names1 = cell(1,size(Combinations,1));
for j = 1:size(Combinations,1);
[R{j},P{j}] = corrcoef([d1(:,[Combinations(j,1)]),d1(:,[Combinations(j,2)])]);
Names1{j} = ([FieldName([Combinations(j,1)],1),FieldName([Combinations(j,2)],1)]);
end
%only obtain a single value for the correlation and p-value
for i = 1:size(Combinations,1);
R{1,i} = R{1,i}(1,2);
P{1,i} = P{1,i}(1,2);
end
R = R';P = P';
%COVARIANCE MATRIX
CovMatrix=cell(size(Combinations,1),3);%pre-allocate memory
for i=1:size(Combinations,1);
CovMatrix{i,3}=R{i,1};
CovMatrix{i,1}=Names1{1,i}{1,1};
CovMatrix{i,2}=Names1{1,i}{1,2};
end
由此我需要生成一个值表,最好采用相关矩阵的形式,类似于 jeremytheadventurer.blogspot.com。这在 MATLAB 中可行吗?
If you run the following code you will end up with a cell array composed of a correlation value in CovMatrix(:,3)
and the name of the data used in calculating the correlation in CovMatrix(:,1)
and CovMatrix(:,2)
:
clear all
FieldName = {'Name1','Name2','Name3','Name4','Name5'};
Data={rand(12,1),rand(12,1),rand(12,1),rand(12,1),rand(12,1)};
DataCell = [FieldName;Data];%place in a structure - this is the same
%structure that the data for the lakes will be placed in.
DataStructure = struct(DataCell{:});
FieldName = fieldnames(DataStructure);
Combinations = nchoosek (1:numel(FieldName),2);
d1 = cell2mat(struct2cell(DataStructure)');%this will be the surface temperatures
%use the combinations found in 'Combinations' to define which elements to
%use in calculating the coherence.
R = cell(1,size(Combinations,1));%pre-allocate the cell array
Names1 = cell(1,size(Combinations,1));
for j = 1:size(Combinations,1);
[R{j},P{j}] = corrcoef([d1(:,[Combinations(j,1)]),d1(:,[Combinations(j,2)])]);
Names1{j} = ([FieldName([Combinations(j,1)],1),FieldName([Combinations(j,2)],1)]);
end
%only obtain a single value for the correlation and p-value
for i = 1:size(Combinations,1);
R{1,i} = R{1,i}(1,2);
P{1,i} = P{1,i}(1,2);
end
R = R';P = P';
%COVARIANCE MATRIX
CovMatrix=cell(size(Combinations,1),3);%pre-allocate memory
for i=1:size(Combinations,1);
CovMatrix{i,3}=R{i,1};
CovMatrix{i,1}=Names1{1,i}{1,1};
CovMatrix{i,2}=Names1{1,i}{1,2};
end
From this I need to produce a table of the values, preferably in the form of a correlation matrix, similar to jeremytheadventurer.blogspot.com. Would this be possible in MATLAB?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您可以使用 corrcoef 命令一次性计算整个数据集的相关矩阵:
由于相关矩阵 CovMat 是对称的,因此如果您忽略上面的矩阵,则它包含所需的结果三角形部分。
You can compute the correlation matrix of your entire data set in one shot using
corrcoef
command:Because the correlation matrix
CovMat
is symmetric, this contains the required result if you ignore the upper triangular part.