单个 C 文件中的 FFT

发布于 2024-12-26 04:25:57 字数 1539 浏览 0 评论 0原文

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(4

梦里°也失望 2025-01-02 04:25:57

该文件可以正常工作:只需复制并粘贴到您的计算机中即可。
在网上冲浪时,我在维基百科页面此处找到了这个简单的实现。该页面是意大利语,所以我用一些翻译重新编写了代码。 这里有几乎相同的信息,但是是英文的。享受!

#include <iostream>
#include <complex>
#define MAX 200

using namespace std;

#define M_PI 3.1415926535897932384

int log2(int N)    /*function to calculate the log2(.) of int numbers*/
{
  int k = N, i = 0;
  while(k) {
    k >>= 1;
    i++;
  }
  return i - 1;
}

int check(int n)    //checking if the number of element is a power of 2
{
  return n > 0 && (n & (n - 1)) == 0;
}

int reverse(int N, int n)    //calculating revers number
{
  int j, p = 0;
  for(j = 1; j <= log2(N); j++) {
    if(n & (1 << (log2(N) - j)))
      p |= 1 << (j - 1);
  }
  return p;
}

void ordina(complex<double>* f1, int N) //using the reverse order in the array
{
  complex<double> f2[MAX];
  for(int i = 0; i < N; i++)
    f2[i] = f1[reverse(N, i)];
  for(int j = 0; j < N; j++)
    f1[j] = f2[j];
}

void transform(complex<double>* f, int N) //
{
  ordina(f, N);    //first: reverse order
  complex<double> *W;
  W = (complex<double> *)malloc(N / 2 * sizeof(complex<double>));
  W[1] = polar(1., -2. * M_PI / N);
  W[0] = 1;
  for(int i = 2; i < N / 2; i++)
    W[i] = pow(W[1], i);
  int n = 1;
  int a = N / 2;
  for(int j = 0; j < log2(N); j++) {
    for(int i = 0; i < N; i++) {
      if(!(i & n)) {
        complex<double> temp = f[i];
        complex<double> Temp = W[(i * a) % (n * a)] * f[i + n];
        f[i] = temp + Temp;
        f[i + n] = temp - Temp;
      }
    }
    n *= 2;
    a = a / 2;
  }
  free(W);
}

void FFT(complex<double>* f, int N, double d)
{
  transform(f, N);
  for(int i = 0; i < N; i++)
    f[i] *= d; //multiplying by step
}

int main()
{
  int n;
  do {
    cout << "specify array dimension (MUST be power of 2)" << endl;
    cin >> n;
  } while(!check(n));
  double d;
  cout << "specify sampling step" << endl; //just write 1 in order to have the same results of matlab fft(.)
  cin >> d;
  complex<double> vec[MAX];
  cout << "specify the array" << endl;
  for(int i = 0; i < n; i++) {
    cout << "specify element number: " << i << endl;
    cin >> vec[i];
  }
  FFT(vec, n, d);
  cout << "...printing the FFT of the array specified" << endl;
  for(int j = 0; j < n; j++)
    cout << vec[j] << endl;
  return 0;
}

This file works properly as it is: just copy and paste in your computer.
Surfing on the web I have found this easy implementation on wikipedia page here. The page is in italian, so I re-wrote the code with some translations. Here there are almost the same informations but in english. ENJOY!

#include <iostream>
#include <complex>
#define MAX 200

using namespace std;

#define M_PI 3.1415926535897932384

int log2(int N)    /*function to calculate the log2(.) of int numbers*/
{
  int k = N, i = 0;
  while(k) {
    k >>= 1;
    i++;
  }
  return i - 1;
}

int check(int n)    //checking if the number of element is a power of 2
{
  return n > 0 && (n & (n - 1)) == 0;
}

int reverse(int N, int n)    //calculating revers number
{
  int j, p = 0;
  for(j = 1; j <= log2(N); j++) {
    if(n & (1 << (log2(N) - j)))
      p |= 1 << (j - 1);
  }
  return p;
}

void ordina(complex<double>* f1, int N) //using the reverse order in the array
{
  complex<double> f2[MAX];
  for(int i = 0; i < N; i++)
    f2[i] = f1[reverse(N, i)];
  for(int j = 0; j < N; j++)
    f1[j] = f2[j];
}

void transform(complex<double>* f, int N) //
{
  ordina(f, N);    //first: reverse order
  complex<double> *W;
  W = (complex<double> *)malloc(N / 2 * sizeof(complex<double>));
  W[1] = polar(1., -2. * M_PI / N);
  W[0] = 1;
  for(int i = 2; i < N / 2; i++)
    W[i] = pow(W[1], i);
  int n = 1;
  int a = N / 2;
  for(int j = 0; j < log2(N); j++) {
    for(int i = 0; i < N; i++) {
      if(!(i & n)) {
        complex<double> temp = f[i];
        complex<double> Temp = W[(i * a) % (n * a)] * f[i + n];
        f[i] = temp + Temp;
        f[i + n] = temp - Temp;
      }
    }
    n *= 2;
    a = a / 2;
  }
  free(W);
}

void FFT(complex<double>* f, int N, double d)
{
  transform(f, N);
  for(int i = 0; i < N; i++)
    f[i] *= d; //multiplying by step
}

int main()
{
  int n;
  do {
    cout << "specify array dimension (MUST be power of 2)" << endl;
    cin >> n;
  } while(!check(n));
  double d;
  cout << "specify sampling step" << endl; //just write 1 in order to have the same results of matlab fft(.)
  cin >> d;
  complex<double> vec[MAX];
  cout << "specify the array" << endl;
  for(int i = 0; i < n; i++) {
    cout << "specify element number: " << i << endl;
    cin >> vec[i];
  }
  FFT(vec, n, d);
  cout << "...printing the FFT of the array specified" << endl;
  for(int j = 0; j < n; j++)
    cout << vec[j] << endl;
  return 0;
}
∞琼窗梦回ˉ 2025-01-02 04:25:57

你最好的选择是 KissFFT - 顾名思义,它是 简单,但它仍然相当快,并且比 FFTW 轻得多。它也是免费的,但如果您想将 FFTW 包含在商业产品中,则需要支付高额许可费。

Your best bet is KissFFT - as its name implies it's simple, but it's still quite respectably fast, and a lot more lightweight than FFTW. It's also free, whereas FFTW requires a hefty licence fee if you want to include it in a commercial product.

落墨 2025-01-02 04:25:57

这里是一个许可许可的 C 库各种不同的 FFT 实现,每个实现都位于其自己的独立 C 文件中。

小…红帽 2025-01-02 04:25:57

您可以开始将 这个 java 片段 转换为 C,作者表示他已将其从 C 转换为基于您可以在网上找到的数字食谱这本书! 此处

You could start converting this java snippet to C the author states he has converted it from C based on the book numerical recipies which you find online! here

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文