C# 纸牌游戏中的最佳纸牌选择
问题在于在游戏的每个时刻遵循以下规则选择最佳选项:
你只能选择最左边或最右边的牌。
你的对手总是先选,并且总是从最左边或最右边的牌中选择最大的牌。如果是平局,它将选择最右边的。考虑到这并不总是最好的选择。
有时不可能获胜,但无论如何,您必须展示通过与该对手(或策略,比如说)比赛可以增加的最高金额。
示例:
Cards: 1 2 4 2 8 4 3
Opponent: 3 4 2 2 = 11
Me: 1 8 4 = 13
在这里,我在第二回合选择了 1 而不是 4,因此我可以稍后选择 8。这就是为什么选择最高的牌并不总是最好的。
我一直在尝试使用递归来实现这个解决方案,但我不确定这是最好的选择。关于如何设计这个算法有什么想法吗?
[编辑] 感谢@PengOne 的慷慨帮助。这是我试图实现的代码,但不幸的是它给了我错误。我应该修复什么?随着我的进步,我正在编辑这个。
static int cardGameValue(List<int> D, int myScore, int opponentScore)
{
if (D.Count == 0) return myScore;
else
{
if (D[0] <= D[D.Count - 1])
{
opponentScore += D[D.Count - 1];
D.RemoveAt(D.Count - 1);
}
else
{
opponentScore += D[0];
D.RemoveAt(0);
}
int left = cardGameValue(
new List<int>(D.GetRange(1, D.Count - 1)),
myScore + D[0],
opponentScore);
int right = cardGameValue(
new List<int>(D.Take(D.Count - 2)),
myScore + D[D.Count - 1],
opponentScore);
if (left >= right)
{ return left; }
else
{ return right; }
}
}
The problem consists in choosing the best option at every moment of the game following these rules:
You can only pick the leftmost or the rightmost card.
Your opponent will ALWAYS pick first, and will ALWAYS choose the highest card from either the leftmost or the rightmost card. If it's a tie, it will pick the rightmost. Take into consideration this is not always the best choice.
Sometimes it's impossible to win, but you must anyway display the highest amout you can add by playing against this opponent (or strategy, let's say).
Example:
Cards: 1 2 4 2 8 4 3
Opponent: 3 4 2 2 = 11
Me: 1 8 4 = 13
Here, I chosed 1 instead of 4 on the second turn, so I could pick the 8 later. That's why choosing the highest card is not always best.
I've been trying to implement this solution using recursion but I'm not sure it's the best option. Any ideas on how to design this algorithm?
[EDIT]
Thanks to @PengOne for it's generous help. This is the code im trying to implement, but unfortunately it's giving me errors. What should I fix in it? I'm editing this as I progress.
static int cardGameValue(List<int> D, int myScore, int opponentScore)
{
if (D.Count == 0) return myScore;
else
{
if (D[0] <= D[D.Count - 1])
{
opponentScore += D[D.Count - 1];
D.RemoveAt(D.Count - 1);
}
else
{
opponentScore += D[0];
D.RemoveAt(0);
}
int left = cardGameValue(
new List<int>(D.GetRange(1, D.Count - 1)),
myScore + D[0],
opponentScore);
int right = cardGameValue(
new List<int>(D.Take(D.Count - 2)),
myScore + D[D.Count - 1],
opponentScore);
if (left >= right)
{ return left; }
else
{ return right; }
}
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
使用递归从最简单的情况构建解决方案。
令
D
为卡片数组。令A
为您的牌总数,B
为对手的牌总数。将S = AB
设置为游戏的值。如果S>0
,则获胜;如果S<0
,则失败;如果S==0
,则平局。最简单的方法是同时进行两步动作,先是你的动作,然后是对手确定的动作。有两种基本情况需要考虑:
如果
length(D) == 0
,则返回S
。游戏结束。如果
length(D) == 1
,则返回S + D[0]
。您选择剩余的牌,游戏结束。对于递归情况,当
length(D) > 时1
,评估两种可能性让
L
成为游戏的结果,如果你选择左边的牌,然后对手做出他的确定性动作,即L = D[0] - max(D[1],D[N-1]) + cardGameValue(newD)
让
R
是游戏的结果,如果您选择正确的牌,然后对手做出确定性的动作,即R = D[N-1] - max(D[0],D[N-2]) + cardGameValue(newD)
选择对应的玩法到较大的数字,即如果
L>=R
则取D[0]
,否则取D[N-1]
。这里N = 长度(D)
。Build the solution out from the simplest cases using recursion.
Let
D
be the array of cards. LetA
be the total of your cards andB
be the total of your opponent's cards. SetS = A-B
to be the value of the game. You win ifS>0
, lose ifS<0
and tie ifS==0
.The easiest is to make two moves at once, your move followed by the opponent's determined move. There are two base cases to consider:
If
length(D) == 0
, returnS
. The game has ended.If
length(D) == 1
, returnS + D[0]
. You choose the remaining card, and the game ends.For the recursive case, when
length(D) > 1
, evaluate the two possibilitiesLet
L
be the result of the game if you choose the left card followed by the opponent doing his deterministic move, i.e.L = D[0] - max(D[1],D[N-1]) + cardGameValue(newD)
Let
R
be the result of the game if you choose the right card followed by the opponent doing his deterministic move, i.e.R = D[N-1] - max(D[0],D[N-2]) + cardGameValue(newD)
Choose the play corresponding to the larger number, i.e. take
D[0]
ifL>=R
, otherwise takeD[N-1]
. HereN = length(D)
.您应该查看最小-最大算法,可能使用Alpha-Beta 剪枝
最小-最大是指你的对手总是会为自己选择最好的选择,因此你可以运行每一个可能的选择场景来发现最佳选择将会导致你击败对手。 “即,假设我采取 x 步,我的对手将采取 y 步,然后我将采取......”等等,一直到游戏结束。因此,您可以决定谁会获胜。
Alpha-Beta 剪枝与此类似,它着眼于可能的场景,但它确定一系列可能的场景是否会产生获胜的结果。如果你知道如果你“移动x”那么无论如何你都会失败,你就不需要花更多的时间看“移动x然后移动y”。您可以从“移动 x”中“修剪”整个选择分支,因为您知道它永远不会有帮助。
You should look at the Min-Max Algorithm, possibly with Alpha-Beta pruning
Min-Max is the idea that your opponent will always choose the best choice for themselves, thus you can run each possible scenario to discover the best choice that will result in you beating your opponent. "ie, given I make move x, my opponent will take move y, then I'll take..." etc, all the way to the end of the game. Thus, you can determine who will win.
Alpha-Beta pruning is similar that it looks at possible scenarios, but it determines if a list of possible scenarios will ever produce a winning outcome. If you know that if you make "move x" then you will always loose no matter what, you don't need to spend more time looking at "move x then move y". You can "prune" off the whole branch of choices from "move x" because you know it will never be helpful.
这是最终实际起作用的代码。感谢大家的支持。
This is the code that actually worked in the end. Thanks to everyone for your support.