在 matlab 中更新 NaiveBayes 分类器
我正在为 Bagging 和 AdaBoost 算法的在线版本编写一个程序,并且使用 matlab 的 NaiveBayes 分类器作为弱学习器。由于作为在线学习者,他们应该一次获取一个数据,所以我必须在每个周期更新 NaiveBayes 分类器,但它没有方法,我必须将所有数据存储在一个数组中,并每次对孔数组调用 NaiveBayes.fit 。由于我有大约 4000 个数据,在实际情况下可能还有更多,我想知道你是否能告诉我更好的方法来做到这一点? (另外,如果我可以研究任何其他弱分类器,请告诉我)
您的, 库罗什
I'm writing a program for online versions of Bagging and AdaBoost algorithms and I'm using matlab's NaiveBayes classifier as the weak learner. Since as online learners they should get data one at a time, I have to update NaiveBayes classifier at each cycle, but it has no methods for it and I have to store all data in an array and call NaiveBayes.fit on hole array every time. Since I have about 4000 data and in real cases there may be many more I was wondering if you could tell me any better ways to do this? (Also if there are any other weak classifiers that I can look into please let me know)
Yours,
Kourosh
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您应该仅在新示例上运行 AdaBoost+NaiveBayes。然后,结果可用于更新先前找到的结果的值。
您可能还想查看这个 MATLAB 中 NaiveBayes 的看似在线版本。
You should run AdaBoost+NaiveBayes only on the new samples. The results can then be used to update the values of the previously found results.
You might also want to check out this version of a seemingly online version of NaiveBayes in MATLAB.