Mathematica 8 上的二维龙格-库塔方法
我在 Mathematica 8 中编程时遇到问题,这是我的代码:
f[t_, y_] := {y, y};
RungeKutta3[a_, b_, Alpha_, n_, f_] :=
Module[{h, j, k1, k2, k3},
h = (b - a)/n;
Y = T = Table[0, {100 + 1}];
Y[[1]] = Alpha;
T[[1]] = a;
For[j = 1, j <= n, ++j,
k1 = f[T[[j]], Y[[j]]];
k2 = f[T[[j]] + h/2, Y[[j]] + k1*h/2];
k3 = f[T[[j]] + h, Y[[j]] + (-k1 + 2 k2)h];
Y[[j + 1]] = Y[[j]] + h/6(k1 + 4 k2 + k3);
(* Print[j, "----->", Y[[j]]];*)
T[[j + 1]] = T[[j]] + h;
];];
RungeKutta3[0., 1., {300., 500}, 2, f];
问题是,我正在尝试实现 Runge-Kutta 方法。我实际上是成功的,但只是使用了具有 1 维的函数 f[x_]
。该代码适用于二维,但它根本不起作用,我不知道为什么。这是仅具有一维的代码的示例(请注意,当我调用“RungeKutta3”时,我必须更改第一行来定义函数和最后一行)。
f[t_, y_] := y;
RungeKutta3[a_, b_, Alpha_, n_, f_] :=
Module[{h, j, k1, k2, k3},
h = (b - a)/n;
Y = T = Table[0, {100 + 1}];
Y[[1]] = Alpha;
T[[1]] = a;
For[j = 1, j <= n, ++j,
k1 = f[T[[j]], Y[[j]]];
k2 = f[T[[j]] + h/2, Y[[j]] + k1*h/2];
k3 = f[T[[j]] + h, Y[[j]] + (-k1 + 2 k2)*h];
Y[[j + 1]] = Y[[j]] + h/6*(k1 + 4 k2 + k3);
(* Print[j, "----->", Y[[j]]];*)
T[[j + 1]] = T[[j]] + h;
];];
RungeKutta3[0., 1., 300., 100, f];
综上所述,如何实现二维函数的龙格-库塔方法?
如果你能帮助我,我将不胜感激。
提前致谢!
PS:龙格-库塔方法是3阶
----------------------
问题解决了!检查代码,如果有人需要帮助,尽管问!
f[t_, y1_, y2_] := 3 t*y2 + Log[y1] + 4 y1 - 2 t^2 * y1 - Log[t^2 + 1] - t^2;
F[t_, {y1_, y2_}] := {y2, f[t, y1, y2]};
RungeKutta3[a_, b_, [Alpha]_, n_, f_] :=
Module[{h, j, k1, k2, k3, Y, T, R},
h = (b - a)/n;
Y = T = Table[0, {n + 1}];
Y[[1]] = [Alpha]; T[[1]] = a;
For[j = 1, j <= n, ++j,
k1 = f[T[[j]], Y[[j]]];
k2 = f[T[[j]] + h/2, Y[[j]] + k1*h/2];
k3 = f[T[[j]] + h, Y[[j]] + (-k1 + 2 k2)*h];
Y[[j + 1]] = Y[[j]] + h/6*(k1 + 4 k2 + k3);
T[[j + 1]] = T[[j]] + h;
];
R = Table[0, {n + 1}];
For[j = 1, j <= n + 1, j++, R[[j]] = Y[[j]][[1]]];
Print[ListPlot[Transpose[{T, R}]]]
];
RungeKutta3[0., 1, {1., 0.}, 1000, F];
我知道基本上有一个数学程序可以解决任何二阶方程!通过龙格-库塔法。只需将函数插入其中
f[t_, y1_, y2_]:= [Insert your function here]
t 是独立值,y1 是函数本身 y(t),y2 是 y'(t)。 通过以下方式调用函数:
RungeKutta3[a, b, [Alpha], n, F];
其中 a 是初始“t”值,b 最终“t”值,[Alpha] 初始值函数和一阶导数(以 {y1(a),y2(a0)} 形式给出),n 是您想要表示的等距点数。 F 是您必须插入的函数,尽管您为 f 提供了函数。
如有任何问题,请随时提出! PS:龙格-库塔问题解决了带有初始值问题的微分方程,我用这个程序作为解决边界值问题的基础,如果你想要它,请给我发短信!
I have a problem while programing in Mathematica 8, here is my code:
f[t_, y_] := {y, y};
RungeKutta3[a_, b_, Alpha_, n_, f_] :=
Module[{h, j, k1, k2, k3},
h = (b - a)/n;
Y = T = Table[0, {100 + 1}];
Y[[1]] = Alpha;
T[[1]] = a;
For[j = 1, j <= n, ++j,
k1 = f[T[[j]], Y[[j]]];
k2 = f[T[[j]] + h/2, Y[[j]] + k1*h/2];
k3 = f[T[[j]] + h, Y[[j]] + (-k1 + 2 k2)h];
Y[[j + 1]] = Y[[j]] + h/6(k1 + 4 k2 + k3);
(* Print[j, "----->", Y[[j]]];*)
T[[j + 1]] = T[[j]] + h;
];];
RungeKutta3[0., 1., {300., 500}, 2, f];
The thing is, I'm trying to implement a Runge-Kutta method. And I was successful actually, but only with a function f[x_]
that had 1 dimension. This code is for 2 dimensions, but it simply doesn't work and I don't know why. Here is an example for a code with 1 dimension only (notice that I have to change the first line to define the function and the last line, when I call "RungeKutta3").
f[t_, y_] := y;
RungeKutta3[a_, b_, Alpha_, n_, f_] :=
Module[{h, j, k1, k2, k3},
h = (b - a)/n;
Y = T = Table[0, {100 + 1}];
Y[[1]] = Alpha;
T[[1]] = a;
For[j = 1, j <= n, ++j,
k1 = f[T[[j]], Y[[j]]];
k2 = f[T[[j]] + h/2, Y[[j]] + k1*h/2];
k3 = f[T[[j]] + h, Y[[j]] + (-k1 + 2 k2)*h];
Y[[j + 1]] = Y[[j]] + h/6*(k1 + 4 k2 + k3);
(* Print[j, "----->", Y[[j]]];*)
T[[j + 1]] = T[[j]] + h;
];];
RungeKutta3[0., 1., 300., 100, f];
To sum up, how do I implemented the Runge-Kutta method for a function with 2 dimensions??
If you could help me out I would be grateful.
Thanks in advance!
PS: the Runge-Kutta method is order 3
----------------------
Problem solved! Check the code, if anybody needs help with anything, just ask!
f[t_, y1_, y2_] := 3 t*y2 + Log[y1] + 4 y1 - 2 t^2 * y1 - Log[t^2 + 1] - t^2;
F[t_, {y1_, y2_}] := {y2, f[t, y1, y2]};
RungeKutta3[a_, b_, [Alpha]_, n_, f_] :=
Module[{h, j, k1, k2, k3, Y, T, R},
h = (b - a)/n;
Y = T = Table[0, {n + 1}];
Y[[1]] = [Alpha]; T[[1]] = a;
For[j = 1, j <= n, ++j,
k1 = f[T[[j]], Y[[j]]];
k2 = f[T[[j]] + h/2, Y[[j]] + k1*h/2];
k3 = f[T[[j]] + h, Y[[j]] + (-k1 + 2 k2)*h];
Y[[j + 1]] = Y[[j]] + h/6*(k1 + 4 k2 + k3);
T[[j + 1]] = T[[j]] + h;
];
R = Table[0, {n + 1}];
For[j = 1, j <= n + 1, j++, R[[j]] = Y[[j]][[1]]];
Print[ListPlot[Transpose[{T, R}]]]
];
RungeKutta3[0., 1, {1., 0.}, 1000, F];
I know basically have a mathematica program that can solve ANY 2nd order equation! Through Runge-Kutta method. just insert your function on
f[t_, y1_, y2_]:= [Insert your function here]
where t is the independent value, y1 is the function itself y(t), y2 is y'(t).
Call the function through:
RungeKutta3[a, b, [Alpha], n, F];
where a is the initial "t" value, b the final "t" value, [Alpha] the initial value of your function and the first derivative (given in the form {y1(a),y2(a0)}), n the number of points equally spaced you want to represent. F is the function you have to insert despite of the function you give to f
Any questions feel free to ask!!
PS: The Runge-Kutta problem solves differential equations with problems of initial values, i used this program as a base to solve a problem of boundary values, if you want it just text me!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您的代码是否只实现了 Mathematica 中已内置的内容,即,如果您要使用
NDSolve 选项?
(这并不是说“自己动手”没有价值:也许您想将其作为自己或学生或作为学生自己的学习练习。)
Doesn't your code just implement what is already built into Mathematica, namely, if you were to use the option
to NDSolve?
(This is not to suggest there's no value in "rolling your own": perhaps you want to do it as a learning exercise for yourself or for students, or as a student yourself.)