Hadoop JobConf 类已弃用,需要更新示例

发布于 2024-12-22 23:31:10 字数 907 浏览 5 评论 0原文

我正在编写 hadoop 程序,我真的不想使用已弃用的类。 在网上的任何地方我都找不到更新的程序

org.apache.hadoop.conf.Configuration

配置类 插入的

org.apache.hadoop.mapred.JobConf

类。

   public static void main(String[] args) throws Exception {
     JobConf conf = new JobConf(Test.class);
     conf.setJobName("TESST");

     conf.setOutputKeyClass(Text.class);
     conf.setOutputValueClass(IntWritable.class);

     conf.setMapperClass(Map.class);
     conf.setCombinerClass(Reduce.class);
     conf.setReducerClass(Reduce.class);

     conf.setInputFormat(TextInputFormat.class);
     conf.setOutputFormat(TextOutputFormat.class);

     FileInputFormat.setInputPaths(conf, new Path(args[0]));
     FileOutputFormat.setOutputPath(conf, new Path(args[1]));

     JobClient.runJob(conf);
   }

这就是我的 main() 的样子。 请任何人都可以为我提供更新的功能。

I am writing hadoop programs , and i really dont want to play with deprecated classes .
Anywhere online i am not able to find programs with updated

org.apache.hadoop.conf.Configuration

class
insted of

org.apache.hadoop.mapred.JobConf

class.

   public static void main(String[] args) throws Exception {
     JobConf conf = new JobConf(Test.class);
     conf.setJobName("TESST");

     conf.setOutputKeyClass(Text.class);
     conf.setOutputValueClass(IntWritable.class);

     conf.setMapperClass(Map.class);
     conf.setCombinerClass(Reduce.class);
     conf.setReducerClass(Reduce.class);

     conf.setInputFormat(TextInputFormat.class);
     conf.setOutputFormat(TextOutputFormat.class);

     FileInputFormat.setInputPaths(conf, new Path(args[0]));
     FileOutputFormat.setOutputPath(conf, new Path(args[1]));

     JobClient.runJob(conf);
   }

This is how my main() looks like.
Can please anyone will provide me with updated function.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

猫烠⑼条掵仅有一顆心 2024-12-29 23:31:10

这是经典的 WordCount 示例。您会注意到其他导入的语气可能不是必需的,阅读代码您就会弄清楚哪个是哪个。

有什么不同?我正在使用 Tool 界面和 GenericOptionParser 来解析作业命令,又名:hadoop jar ...。

在映射器中,您会注意到一个运行的东西。您可以摆脱它,当您提供 Map 方法的代码时,通常会默认调用它。我把它放在那里是为了给您提供可以进一步控制映射阶段的信息。这一切都是使用新的API。我希望你觉得它有用。如有其他问题,请告诉我!

import java.io.IOException;
import java.util.*;

import org.apache.commons.io.FileUtils;
import org.apache.hadoop.conf.*;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.util.GenericOptionsParser;

public class Inception extends Configured implements Tool{

 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }

  public void run (Context context) throws IOException, InterruptedException {
        setup(context);
        while (context.nextKeyValue()) {
              map(context.getCurrentKey(), context.getCurrentValue(), context);
            }
        cleanup(context);
  }
 }

 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterable<IntWritable> values, Context context) 
      throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
 }

public int run(String[] args) throws Exception {

    Job job = Job.getInstance(new Configuration());

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);

    job.setMapperClass(Map.class);
    job.setReducerClass(Reduce.class);

    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputFormatClass(TextOutputFormat.class);

    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    job.setJarByClass(WordCount.class);

    job.submit();
    return 0;
    }

 public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    ToolRunner.run(new WordCount(), otherArgs);
 }
}

Here it's the classic WordCount example. You'll notice a tone of other imports that may not be necessary, reading the code you'll figure out which is which.

What's different? I'm using the Tool interface and the GenericOptionParser to parse the job command a.k.a : hadoop jar ....

In the mapper you'll notice a run thing. You can get rid of that, it's usually called by default when you supply the code for the Map method. I put it there to give you the info that you can further control the mapping stage. This is all using the new API. I hope you find it useful. Any other questions, let me know!

import java.io.IOException;
import java.util.*;

import org.apache.commons.io.FileUtils;
import org.apache.hadoop.conf.*;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.util.GenericOptionsParser;

public class Inception extends Configured implements Tool{

 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }

  public void run (Context context) throws IOException, InterruptedException {
        setup(context);
        while (context.nextKeyValue()) {
              map(context.getCurrentKey(), context.getCurrentValue(), context);
            }
        cleanup(context);
  }
 }

 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterable<IntWritable> values, Context context) 
      throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
 }

public int run(String[] args) throws Exception {

    Job job = Job.getInstance(new Configuration());

    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);

    job.setMapperClass(Map.class);
    job.setReducerClass(Reduce.class);

    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputFormatClass(TextOutputFormat.class);

    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    job.setJarByClass(WordCount.class);

    job.submit();
    return 0;
    }

 public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    ToolRunner.run(new WordCount(), otherArgs);
 }
}
花之痕靓丽 2024-12-29 23:31:10

还以经典的 WordCount 为例:

org.apache.hadoop.mapred.JobConf 是旧的,在新版本中我们使用 Configuration< /code> 和 Job 来实现。

请使用org.apache.hadoop.mapreduce.lib.*(它是新的API)而不是org.apache.hadoop.mapred.TextInputFormat(它是旧的)。

MapperReducer没什么新鲜的,请看main函数,它包含了比较全面的配置,您可以根据您的具体需求随意更改它们。

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
  private Text outputKey;
  private IntWritable outputVal;

  @Override
  public void setup(Context context) {
    outputKey = new Text();
    outputVal = new IntWritable(1);
  }

  @Override
  public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
    StringTokenizer stk = new StringTokenizer(value.toString());
    while(stk.hasMoreTokens()) {
      outputKey.set(stk.nextToken());
      context.write(outputKey, outputVal);
    }
  }
}

class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
  private IntWritable result;

  @Override
  public void setup(Context context) {
    result = new IntWritable();
  }

  @Override
  public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
    int sum = 0;
    for(IntWritable val: values) {
      sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
  }
}

public class WordCount {
  public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    Configuration conf = new Configuration();
    if(args.length != 2) {
      System.err.println("Usage: <in> <out>");
      System.exit(2);
    }
    Job job = Job.getInstance(conf, "Word Count");

    // set jar
    job.setJarByClass(WordCount.class);

    // set Mapper, Combiner, Reducer
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);

    /* Optional, set customer defined Partioner:
     * job.setPartitionerClass(MyPartioner.class);
     */

    // set output key
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);

    // set input and output path
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    // by default, Hadoop use TextInputFormat and TextOutputFormat
    // any customer defined input and output class must implement InputFormat/OutputFormat interface
    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputFormatClass(TextOutputFormat.class);

    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

Also take classic WordCount as example:

org.apache.hadoop.mapred.JobConf is old, in new version we use Configuration and Job to achieve.

Please use org.apache.hadoop.mapreduce.lib.* (it is new API) instead of org.apache.hadoop.mapred.TextInputFormat (it is old).

The Mapper and Reducer are nothing new, please see main function, it includes relatively overall configurations, feel free to change them according to your specific requirements.

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
  private Text outputKey;
  private IntWritable outputVal;

  @Override
  public void setup(Context context) {
    outputKey = new Text();
    outputVal = new IntWritable(1);
  }

  @Override
  public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
    StringTokenizer stk = new StringTokenizer(value.toString());
    while(stk.hasMoreTokens()) {
      outputKey.set(stk.nextToken());
      context.write(outputKey, outputVal);
    }
  }
}

class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
  private IntWritable result;

  @Override
  public void setup(Context context) {
    result = new IntWritable();
  }

  @Override
  public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
    int sum = 0;
    for(IntWritable val: values) {
      sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
  }
}

public class WordCount {
  public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    Configuration conf = new Configuration();
    if(args.length != 2) {
      System.err.println("Usage: <in> <out>");
      System.exit(2);
    }
    Job job = Job.getInstance(conf, "Word Count");

    // set jar
    job.setJarByClass(WordCount.class);

    // set Mapper, Combiner, Reducer
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);

    /* Optional, set customer defined Partioner:
     * job.setPartitionerClass(MyPartioner.class);
     */

    // set output key
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);

    // set input and output path
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    // by default, Hadoop use TextInputFormat and TextOutputFormat
    // any customer defined input and output class must implement InputFormat/OutputFormat interface
    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputFormatClass(TextOutputFormat.class);

    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}
~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文