有没有一种算法可以在多项式时间内找到k-tsp(旅行商)的最优值?

发布于 2024-12-22 16:15:57 字数 385 浏览 2 评论 0 原文

我读了这篇文章,它建议(第1025页最后一段)存在一个多项式时间算法使用二分搜索找到 k-tsp 问题的最优解。 使用二分搜索表明存在一种算法来检查是否存在具有 cost 的解决方案,并且该算法用于二分搜索。 我为此“谷歌搜索”,我能找到的唯一算法是非确定性算法(这非常简单),但显然我正在寻找一种确定性算法。

我出于学习目的对此感兴趣,

任何帮助/链接将不胜感激。

编辑

我指的是寻找最佳解决方案的价值,而不是寻找解决方案本身。

I read this article, it suggests (page 1025 last paragraph) that there is a polynomial time algorithm to find the optimum of a k-tsp problem using binary search.
Using binary search would suggest there exists an algorithm for checking if a solution exists with cost<X and this algorithm is used for the binary search.
I 'googled' around for this and the only algorithm i could find was a non deterministic one (which is pretty trivial), but obviously i'm looking for a deterministic one.

I am interested in this for learning purposes,

Any help/links would be appreciated.

EDIT

I am referring to finding the value of the optimal solution and not about finding the solution itself.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

谈下烟灰 2024-12-29 16:15:57

由于 TSP 是 k-TSP 的特殊情况,其中 k = 图中的节点数。如果您有一个关于图大小的多项式“什么是最便宜的 k-TSP 路线”的解决方案,那么您就会有一个 TSP 决策问题版本的多项式解决方案,这意味着 P = NP。

所以答案是否定的。 k-TSP 的决策问题和优化版本(本质上是相同的)的确定性多项式算法还不存在。

Since TSP is a special case of k-TSP where k = number of nodes in the graph. If you had a solution for "what's the cheapest k-TSP route" in polynomial in relation to graph size, then you'd have a polynomial solution to decision problem version of TSP which would imply that P = NP.

So the answer is no. Deterministic polynomial algorithm for both decision problem and optimization version (they're essentially the same) of k-TSP doesn't exist (yet).

与他有关 2024-12-29 16:15:57

您提到的论文提出了一种针对有向 k-TSP 问题的多项式时间近似算法。

近似算法是那些保证产生与最佳解值偏差有限的解的算法。有一些针对 NP-Hard 问题的多项式时间逼近算法的示例:Christofides 算法 得出,时间 O(n3),度量 TSP 问题的解,其值最多为最优解值的 3/2。

The paper you mentioned proposes a polynomial-time approximation algorithm for the directed k-TSP problem.

Approximation algorithms are those which are guaranteed to yield solutions with a limited deviation from the optimal solution value. There are examples of polynomial-time approximation algorithms for NP-Hard problems: the Christofides Algorithm yields, in time O(n³), solutions to the metric TSP problem whose values are at most 3/2 the value of the optimal solution.

横笛休吹塞上声 2024-12-29 16:15:57

David Karger 在一次讲座 (链接) 中

提到了一种随机算法高效的 k-TSP 问题,其运行时间为 n 的多项式时间(但 k 为指数)。它基于颜色编码的思想:用 [1..k] 中的随机颜色为每个节点着色,并找到最短的彩色路径(其中每种颜色恰好出现一次)。通过简单的动态规划算法,这种方法的运行时间为 O(n^2 2^k),并且以概率 e^{-k} 成功(以最小成本找到路径)。通过重复 e^k 次,可以实现一种以高概率找到最小 k-TSP 的算法。

David Karger, in a lecture (link)

mentions a randomized algorithm for efficient k-TSP problem which runs in polynomial time in n (but exponential in k). It is based on the idea of color coding: color each of the node with a random color in [1..k], and find a shortest chromatic path (where each color appears exactly once). With a simple dynamic programming algorithm, this approach gives a runtime of O(n^2 2^k) and it succeeds (in finding the path with minimal cost) with probability e^{-k}. By repeating e^k times, one achieves an algorithm that finds the minimum k-TSP with high probability.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文