使用数码相机进行相机校准

发布于 2024-12-22 12:38:02 字数 4785 浏览 3 评论 0原文

我已经从事相机校准工作大约一周了。我从在线文章和博客中看到的示例使用网络摄像头来捕获图像。

但对于我的场景,我使用的是数码相机,即 Casio Exilim EX-Z77。我将图像添加到设置的程序参数中,并使用 for 循环单独访问它们。通过这种方式,我能够模仿网络摄像头的工作原理。

我有可能获得正确的扭曲和内在吗? 如果我错了或者有误解,请纠正我。

这里是我基于代码的文章。下面的代码是我能够制作的。

     int n_boards = 0;
     int board_w;
     int board_h;
     using namespace std;
    int main( int argc, char *argv[] )
    {
 board_w = 5; // Board width in squares
 board_h = 8; // Board height
 n_boards = 16; // Number of boards
 int board_n = board_w * board_h;
 CvSize board_sz = cvSize( board_w, board_h );

 CvMat* image_points        = cvCreateMat( n_boards*board_n, 2, CV_32FC1 );
 CvMat* object_points       = cvCreateMat( n_boards*board_n, 3, CV_32FC1 );
 CvMat* point_counts            = cvCreateMat( n_boards, 1, CV_32SC1 );
 CvMat* intrinsic_matrix        = cvCreateMat( 3, 3, CV_32FC1 );
 CvMat* distortion_coeffs   = cvCreateMat( 5, 1, CV_32FC1 );

 CvPoint2D32f* corners = new CvPoint2D32f[ board_n ];
 int corner_count;
 int successes = 0;
 int step;

      int a;
      for(a =1; a<=n_boards; a++){

   while( successes < n_boards ){

        IplImage *image = cvLoadImage(argv[a]);
        IplImage *gray_image = cvCreateImage( cvGetSize( image ), 8, 1 );

        int found = cvFindChessboardCorners( image, board_sz, corners,
            &corner_count, CV_CALIB_CB_ADAPTIVE_THRESH |         CV_CALIB_CB_FILTER_QUADS );

        // Get subpixel accuracy on those corners
        cvCvtColor( image, gray_image, CV_BGR2GRAY );
        cvFindCornerSubPix( gray_image, corners, corner_count, cvSize( 11, 11 ),
            cvSize( -1, -1 ), cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));

        // Draw it
        cvDrawChessboardCorners( image, board_sz, corners, corner_count, found );
        //cvShowImage( "Calibration", image );

        // If we got a good board, add it to our data
        if( corner_count == board_n ){
            step = successes*board_n;
            for( int i=step, j=0; j < board_n; ++i, ++j ){
                CV_MAT_ELEM( *image_points, float, i, 0 ) = corners[j].x;
                CV_MAT_ELEM( *image_points, float, i, 1 ) = corners[j].y;
                CV_MAT_ELEM( *object_points, float, i, 0 ) = j/board_w;
                CV_MAT_ELEM( *object_points, float, i, 1 ) = j%board_w;
                CV_MAT_ELEM( *object_points, float, i, 2 ) = 0.0f;
            }
            CV_MAT_ELEM( *point_counts, int, successes, 0 ) = board_n;
            successes++;
        }

}
  IplImage *image1 = cvLoadImage(argv[1]);
CvMat* object_points2 = cvCreateMat( successes*board_n, 3, CV_32FC1 );
CvMat* image_points2 = cvCreateMat( successes*board_n, 2, CV_32FC1 );
CvMat* point_counts2 = cvCreateMat( successes, 1, CV_32SC1 );


// Transfer the points into the correct size matrices
for( int i = 0; i < successes*board_n; ++i ){
    CV_MAT_ELEM( *image_points2, float, i, 0) = CV_MAT_ELEM( *image_points, float, i, 0 );
    CV_MAT_ELEM( *image_points2, float, i, 1) = CV_MAT_ELEM( *image_points, float, i, 1 );
    CV_MAT_ELEM( *object_points2, float, i, 0) = CV_MAT_ELEM( *object_points, float, i, 0 );
    CV_MAT_ELEM( *object_points2, float, i, 1) = CV_MAT_ELEM( *object_points, float, i, 1 );
    CV_MAT_ELEM( *object_points2, float, i, 2) = CV_MAT_ELEM( *object_points, float, i, 2 );
}

for( int i=0; i < successes; ++i ){
    CV_MAT_ELEM( *point_counts2, int, i, 0 ) = CV_MAT_ELEM( *point_counts, int, i, 0 );
}
cvReleaseMat( &object_points );
cvReleaseMat( &image_points );
cvReleaseMat( &point_counts );

CV_MAT_ELEM( *intrinsic_matrix, float, 0, 0 ) = 1.0;
CV_MAT_ELEM( *intrinsic_matrix, float, 1, 1 ) = 1.0;

cvCalibrateCamera2( object_points2, image_points2, point_counts2, cvGetSize( image1 ),
    intrinsic_matrix, distortion_coeffs, NULL, NULL, CV_CALIB_FIX_ASPECT_RATIO );

cvSave( "Intrinsics.xml", intrinsic_matrix );
cvSave( "Distortion.xml", distortion_coeffs );

// Example of loading these matrices back in
CvMat *intrinsic = (CvMat*)cvLoad( "Intrinsics.xml" );
CvMat *distortion = (CvMat*)cvLoad( "Distortion.xml" );

IplImage* mapx = cvCreateImage( cvGetSize( image1 ), IPL_DEPTH_32F, 1 );
IplImage* mapy = cvCreateImage( cvGetSize( image1 ), IPL_DEPTH_32F, 1 );
cvInitUndistortMap( intrinsic, distortion, mapx, mapy );

cvNamedWindow( "Undistort" );

while( image1 ){
    IplImage *t = cvCloneImage( image1 );
    cvShowImage( "Calibration", image ); // Show raw image
    cvRemap( t, image1, mapx, mapy ); // undistort image
    cvReleaseImage( &t );
    cvShowImage( "Undistort", image1 ); // Show corrected image

    }
}

return 0;
}

我正在使用代码块 10.05 和 Opencv 2.3.0、Mingw GNU GCC 编译器。

I have been working on Camera Calibration for about a week know. The examples I saw from online articles and blogs uses a Web Camera to Capture the images.

But for my scenario I am using a digital camera namely Casio Exilim EX-Z77. I add the images into the set program arguments and access them individually using a for loop. In this manner I was able to imitate how a web camera works.

Is it possible for me to get the correct distortions and intrinsics??
Correct me if I am wrong or having a misunderstanding.

Here is the article I based my code. The code below is what I was able to make.

     int n_boards = 0;
     int board_w;
     int board_h;
     using namespace std;
    int main( int argc, char *argv[] )
    {
 board_w = 5; // Board width in squares
 board_h = 8; // Board height
 n_boards = 16; // Number of boards
 int board_n = board_w * board_h;
 CvSize board_sz = cvSize( board_w, board_h );

 CvMat* image_points        = cvCreateMat( n_boards*board_n, 2, CV_32FC1 );
 CvMat* object_points       = cvCreateMat( n_boards*board_n, 3, CV_32FC1 );
 CvMat* point_counts            = cvCreateMat( n_boards, 1, CV_32SC1 );
 CvMat* intrinsic_matrix        = cvCreateMat( 3, 3, CV_32FC1 );
 CvMat* distortion_coeffs   = cvCreateMat( 5, 1, CV_32FC1 );

 CvPoint2D32f* corners = new CvPoint2D32f[ board_n ];
 int corner_count;
 int successes = 0;
 int step;

      int a;
      for(a =1; a<=n_boards; a++){

   while( successes < n_boards ){

        IplImage *image = cvLoadImage(argv[a]);
        IplImage *gray_image = cvCreateImage( cvGetSize( image ), 8, 1 );

        int found = cvFindChessboardCorners( image, board_sz, corners,
            &corner_count, CV_CALIB_CB_ADAPTIVE_THRESH |         CV_CALIB_CB_FILTER_QUADS );

        // Get subpixel accuracy on those corners
        cvCvtColor( image, gray_image, CV_BGR2GRAY );
        cvFindCornerSubPix( gray_image, corners, corner_count, cvSize( 11, 11 ),
            cvSize( -1, -1 ), cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));

        // Draw it
        cvDrawChessboardCorners( image, board_sz, corners, corner_count, found );
        //cvShowImage( "Calibration", image );

        // If we got a good board, add it to our data
        if( corner_count == board_n ){
            step = successes*board_n;
            for( int i=step, j=0; j < board_n; ++i, ++j ){
                CV_MAT_ELEM( *image_points, float, i, 0 ) = corners[j].x;
                CV_MAT_ELEM( *image_points, float, i, 1 ) = corners[j].y;
                CV_MAT_ELEM( *object_points, float, i, 0 ) = j/board_w;
                CV_MAT_ELEM( *object_points, float, i, 1 ) = j%board_w;
                CV_MAT_ELEM( *object_points, float, i, 2 ) = 0.0f;
            }
            CV_MAT_ELEM( *point_counts, int, successes, 0 ) = board_n;
            successes++;
        }

}
  IplImage *image1 = cvLoadImage(argv[1]);
CvMat* object_points2 = cvCreateMat( successes*board_n, 3, CV_32FC1 );
CvMat* image_points2 = cvCreateMat( successes*board_n, 2, CV_32FC1 );
CvMat* point_counts2 = cvCreateMat( successes, 1, CV_32SC1 );


// Transfer the points into the correct size matrices
for( int i = 0; i < successes*board_n; ++i ){
    CV_MAT_ELEM( *image_points2, float, i, 0) = CV_MAT_ELEM( *image_points, float, i, 0 );
    CV_MAT_ELEM( *image_points2, float, i, 1) = CV_MAT_ELEM( *image_points, float, i, 1 );
    CV_MAT_ELEM( *object_points2, float, i, 0) = CV_MAT_ELEM( *object_points, float, i, 0 );
    CV_MAT_ELEM( *object_points2, float, i, 1) = CV_MAT_ELEM( *object_points, float, i, 1 );
    CV_MAT_ELEM( *object_points2, float, i, 2) = CV_MAT_ELEM( *object_points, float, i, 2 );
}

for( int i=0; i < successes; ++i ){
    CV_MAT_ELEM( *point_counts2, int, i, 0 ) = CV_MAT_ELEM( *point_counts, int, i, 0 );
}
cvReleaseMat( &object_points );
cvReleaseMat( &image_points );
cvReleaseMat( &point_counts );

CV_MAT_ELEM( *intrinsic_matrix, float, 0, 0 ) = 1.0;
CV_MAT_ELEM( *intrinsic_matrix, float, 1, 1 ) = 1.0;

cvCalibrateCamera2( object_points2, image_points2, point_counts2, cvGetSize( image1 ),
    intrinsic_matrix, distortion_coeffs, NULL, NULL, CV_CALIB_FIX_ASPECT_RATIO );

cvSave( "Intrinsics.xml", intrinsic_matrix );
cvSave( "Distortion.xml", distortion_coeffs );

// Example of loading these matrices back in
CvMat *intrinsic = (CvMat*)cvLoad( "Intrinsics.xml" );
CvMat *distortion = (CvMat*)cvLoad( "Distortion.xml" );

IplImage* mapx = cvCreateImage( cvGetSize( image1 ), IPL_DEPTH_32F, 1 );
IplImage* mapy = cvCreateImage( cvGetSize( image1 ), IPL_DEPTH_32F, 1 );
cvInitUndistortMap( intrinsic, distortion, mapx, mapy );

cvNamedWindow( "Undistort" );

while( image1 ){
    IplImage *t = cvCloneImage( image1 );
    cvShowImage( "Calibration", image ); // Show raw image
    cvRemap( t, image1, mapx, mapy ); // undistort image
    cvReleaseImage( &t );
    cvShowImage( "Undistort", image1 ); // Show corrected image

    }
}

return 0;
}

I am using Code blocks 10.05 and Opencv 2.3.0, Mingw GNU GCC compiler.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

黒涩兲箜 2024-12-29 12:38:02

卡西欧 Exilim EX-Z77 等数码相机通常会在相机内执行一定量的图像校正。

相信您从这台相机获得的图像已经被校正(关于镜头畸变),但我找不到支持这一说法的参考资料。

至于您使用的多个图像,实际上您只需要一个即可发现失真。有关使用 OpenCV 的此过程的更多信息,请查看此答案

编辑

既然你提到了图像拼接,OpenCV在2.2版本上开始支持此功能

OpenCV 2.2 发布! 此版本发布后预告片已经发布:全景拼接

关于这个主题,这个 有趣的帖子分享了一些源代码

Digital cameras such as Casio Exilim EX-Z77 usually perform a certain amount of image correction in-camera.

I believe that the images you get from this camera are already corrected (regarding lens distortion), but I couldn't find a reference to back up this claim.

As for the multiple images you are using, in practice you only need one to find the distortion. For more information on this procedure using OpenCV check this answer.

EDIT:

Since you mentioned image stitching, OpenCV started to support this feature on version 2.2:

OpenCV 2.2 is released! Teasers already far along AFTER this release: Panoramic Stitching

On this subject, this interesting post shares some source code.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文