三次埃尔米特样条表现异常
我正在尝试使用三次Hermite样条线绘制图表。我从这个 插值方法 页面获取了简单的代码。
这是我的代码:
private float HermiteInterpolate(float y0, float y1, float y2, float y3, float mu)
{
var mu2 = mu * mu;
var a0 = -0.5f * y0 + 1.5f * y1 - 1.5f * y2 + 0.5f * y3;
var a1 = y0 - 2.5f * y1 + 2f * y2 - 0.5f * y3;
var a2 = -0.5f * y0 + 0.5f * y2;
var a3 = y1;
return (a0 * mu * mu2) + (a1 * mu2) + (a2 * mu) + a3;
}
使用此数据(y值,从0-1,x值从0-21均匀分布):
0, 0.09448819, 0.1102362, 0.1338583, 0.1811024, 0.2283465 ,0.3543307, 0.4645669、0.480315、0.480315、0.527559、0.527559、0.527559、0.527559、0.527559、0.527559、0.6062992、0.6377953、 0.6377953, 0.6377953, 0.7480315
这是结果:
问题是,在图中,线条向下。从数据来看,它从未减少。我不知道算法是否应该这样做,但对于我正在研究的内容,我希望线条永远不会向下(如果我用手绘制图表,我永远不会让它们指向向下) 。
那么,
- 图形有问题吗?
- 算法应该这样做吗?如果是这样,有没有一种情况不会发生?
- 我尝试过余弦插值,但不喜欢它的结果。
这是实际的绘图函数:
public void DrawGraph(IList<float> items)
{
for (var x = 0; x < Width; x++)
{
var percentThrough = (float)x / (float)Width;
var itemIndexRaw = items.Count * percentThrough;
var itemIndex = (int)Math.Floor(itemIndexRaw);
var item = items[itemIndex];
var previousItem = (itemIndex - 1) < 0 ? item : items[itemIndex - 1];
var nextItem = (itemIndex + 1) >= items.Count ? item : items[itemIndex + 1];
var nextNextItem = (itemIndex + 2) >= items.Count ? nextItem : items[itemIndex + 2];
var itemMu = FractionalPart(itemIndexRaw);
var pointValue = HermiteInterpolate(previousItem, item, nextItem, nextNextItem, itemMu);
WritePixel(x, (int)(pointValue * Height) - 1, (1 - FractionalPart(pointValue)), false);
WritePixel(x, (int)(pointValue * Height), 1.0f, false);
WritePixel(x, (int)(pointValue * Height) + 1, FractionalPart(pointValue), false);
}
}
I'm attempting to draw a graph using Cubic Hermite Splines. I grabbed the simple code to do so from this interpolation methods page.
Here is my code:
private float HermiteInterpolate(float y0, float y1, float y2, float y3, float mu)
{
var mu2 = mu * mu;
var a0 = -0.5f * y0 + 1.5f * y1 - 1.5f * y2 + 0.5f * y3;
var a1 = y0 - 2.5f * y1 + 2f * y2 - 0.5f * y3;
var a2 = -0.5f * y0 + 0.5f * y2;
var a3 = y1;
return (a0 * mu * mu2) + (a1 * mu2) + (a2 * mu) + a3;
}
With this data (y-values, from 0-1, x-values are distributed evenly from 0-21):
0, 0.09448819, 0.1102362, 0.1338583, 0.1811024, 0.2283465 ,0.3543307, 0.4645669, 0.480315, 0.480315, 0.527559, 0.527559, 0.527559, 0.527559, 0.527559, 0.527559, 0.6062992, 0.6377953, 0.6377953, 0.6377953, 0.7480315
And here is the result:
The problem is, at some areas of the graph, the line goes downward. Looking at the data, it never decreases. I don't know if the algorithm is supposed to do this, but for what I am working on, I want the lines to never go downward (and if I was drawing the graph by hand, I would never make them point downward anyway).
So,
- Is there something wrong with the graphing?
- Is the algorithm supposed to do this? If so, is there one where this doesn't happen?
- I have tried cosine interpolation, but didn't like how it turned out.
Here is the actual graphing function:
public void DrawGraph(IList<float> items)
{
for (var x = 0; x < Width; x++)
{
var percentThrough = (float)x / (float)Width;
var itemIndexRaw = items.Count * percentThrough;
var itemIndex = (int)Math.Floor(itemIndexRaw);
var item = items[itemIndex];
var previousItem = (itemIndex - 1) < 0 ? item : items[itemIndex - 1];
var nextItem = (itemIndex + 1) >= items.Count ? item : items[itemIndex + 1];
var nextNextItem = (itemIndex + 2) >= items.Count ? nextItem : items[itemIndex + 2];
var itemMu = FractionalPart(itemIndexRaw);
var pointValue = HermiteInterpolate(previousItem, item, nextItem, nextNextItem, itemMu);
WritePixel(x, (int)(pointValue * Height) - 1, (1 - FractionalPart(pointValue)), false);
WritePixel(x, (int)(pointValue * Height), 1.0f, false);
WritePixel(x, (int)(pointValue * Height) + 1, FractionalPart(pointValue), false);
}
}
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
这种行为是正常的。
插值方法施加一定的连续性条件,以给出平滑曲线的外观。对于 Hermite 插值,不存在通过一系列递增值的插值曲线也必须随处递增的条件,因此有时您会得到此处显示的效果。
有一种叫做单调三次插值的东西可以满足你的需求:如果数据点增加,插值曲线也会增加处处也。
This behavior is normal.
Interpolation methods impose certain continuity conditions in order to give the appearance of a smooth curve. For Hermite interpolation, there is no condition that the interpolating curve through a sequence of increasing values must also be increasing everywhere, and so sometimes you get the effect you show here.
There is something called monotone cubic interpolation which does what you want: if the data points are increasing, the interpolating curve will be increasing everywhere also.