R 中的马诺瓦错误消息:“dimnames”的长度; [1] 不等于数组范围
尝试对此数据运行马诺瓦:
创建一个data.frame:
acc <- data.frame(Degrees = c("5","8","10"), MPH10=c(0.35, 0.37, 0.32),
MPH25=c(0.19, 0.28, 0.30), MPH40=c(0.14, 0.19, 0.29), MPH55=c(0.10, 0.19, 0.23))
检查data.frame:
acc
Degrees MPH10 MPH25 MPH40 MPH55
1 5 0.35 0.19 0.14 0.10
2 8 0.37 0.28 0.19 0.19
3 10 0.32 0.30 0.29 0.23
我输入:
acc_manova <- manova(cbind(MPH10,MPH25,MPH40,MPH55) ~ Degrees, data = acc)
然后运行它:
acc_manova
我收到一条错误消息:
Call:
manova(cbind(MPH10, MPH25, MPH40, MPH55) ~ as.factor(Degrees),
data = acc)
Terms:
Error in dimnames(tmp) <- list(c(rn, "Deg. of Freedom"), nmeffect) :
length of 'dimnames' [1] not equal to array extent
所以我认为它与度数列的名称有关:d05 ,d08,d10 所以我放弃了 d 和 0 占位符。有相同的错误消息
,然后我添加了 as.factor(Degrees),再次运行 acc_manova,并出现了相同的错误。
对此有什么想法吗?
Trying to run manova on this data:
Create a data.frame:
acc <- data.frame(Degrees = c("5","8","10"), MPH10=c(0.35, 0.37, 0.32),
MPH25=c(0.19, 0.28, 0.30), MPH40=c(0.14, 0.19, 0.29), MPH55=c(0.10, 0.19, 0.23))
check the data.frame:
acc
Degrees MPH10 MPH25 MPH40 MPH55
1 5 0.35 0.19 0.14 0.10
2 8 0.37 0.28 0.19 0.19
3 10 0.32 0.30 0.29 0.23
I type in:
acc_manova <- manova(cbind(MPH10,MPH25,MPH40,MPH55) ~ Degrees, data = acc)
then run it:
acc_manova
I get an error message:
Call:
manova(cbind(MPH10, MPH25, MPH40, MPH55) ~ as.factor(Degrees),
data = acc)
Terms:
Error in dimnames(tmp) <- list(c(rn, "Deg. of Freedom"), nmeffect) :
length of 'dimnames' [1] not equal to array extent
So I figure it has to do with the names of the degrees column: d05,d08,d10 so I dropped the d and 0 place holder. Had the same error message
then I added as.factor(Degrees), ran acc_manova again, and came up with the same error.
Any ideas on this?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您的 Degrees 列不是数字,而是一个因素(分类数据)。将因子更改为数字可以解决您的问题:
Your Degrees column is not numeric, but a factor (categorical data). Changing the factor to numeric solves your problem: