求图的最短路径并打印路由表
这是针对java中的数据结构类,我需要创建一个图形来读取文本输入,将此信息转换为图形,然后从那里打印邻接列表并打印最大生成树,我已经完成了。然而,最后一个方面是
您的程序必须为网络中的每对 [i,j] (i != j) 计算机生成完整的路由表,即从 i 到 j 的最佳路由上的第一台计算机。如果 i 和 j 有直接连接,则 j 将是该路由(对 [i,j])的结果(表条目)。如果从i到j的最佳路线是i->;一个-> b-> j,则 a 将是该路线的结果(表条目)。然后,我们可以通过查看 [i,j] (=a)、[a,j] (=b)、[b,j] (=j) 中的值来构建路线。
基本上就是 Dijksta 算法。但是,我无法使用任何处理图形的 Java API(所有其他 API 都是允许的)。到目前为止,我的
import java.util.ArrayList;
//import java.util.Stack;
public class Graph2 {
ArrayList<Vertex> vert = new ArrayList<Vertex>();
private static int counter = 0;
private int edges;
private Edge[] allEdges = new Edge[50];
private class Vertex{
String ip;
private int id;
ArrayList<Edge> nb = new ArrayList<Edge>();
/**
* Constructor for Vertex
* @param String of IP
*/
public Vertex(String s){
ip = s;
id = counter;
counter++;
}
/**
* Gets the ID of a vertex
* @return unique ID
*/
public int getId(){
return id;
}
/*
public boolean isSame(Vertex v){
if(this.ip.equals(v.getIp()))
return true;
else
return false;
}
*/
/**
* Gets the IP of a vertex
* @return the IP of the vertex
*/
public String getIp(){
return this.ip;
}
/**
* Adds an edge to nb
* @param edge to be added
*/
public void addList(Edge e){
nb.add(e);
}
/**
* Determines if an edge exists
* @param edge to be checked
* @return true if exists, false if not
*/
public boolean exists(Edge e){
if(nb.indexOf(e) != -1){
return true;
}
else
return false;
}
/**
* Gets the size of an edge
* @return size of edge
*/
public int edgeSize(){
return nb.size();
}
/**
* Gets the edges
* @return String of edges
*/
public String getEdges(){
String all = "";
Edge e;
for(int i = 0; i < nb.size(); i++){
e = nb.get(i);
int ti = this.getId();
int fin = e.getFinish().getId();
if(ti == fin)
all += e.getStart().getId() + " ";
else
all += e.getFinish().getId() + " ";
}
return all;
}
/**
* Overrides toString method
* @return ID and IP of vertex
*/
public String toString(){
return id + " " + " " + ip;
}
}
private class Edge{
int weight;
Vertex finish;
Vertex start;
/**
* Constructor of Edge
* @param vertex 1, start vertex
* @param vertex 2, endpoint vertex
* @param weight of edge
*/
public Edge(Vertex v, Vertex v2, int w){
start = v;
finish = v2;
weight = w;
}
/**
* Gets the start of an edge
* @return edge start
*/
public Vertex getStart(){
return start;
}
/**
* Gets the endpoint of an edge
* @return endpoint of edge
*/
public Vertex getFinish(){
return finish;
}
/**
* Gets the weight of an edge
* @return weight of edge
*/
public int getWeight(){
return weight;
}
/**
* Overrides toString
* @return start of edge and endpoint of edge
*/
public String toString(){
return start + " " + finish;
}
}
/**
* Adds an edge to 2 verticies
* @param s, starting vertex IP
* @param t, enpoint vertex IP
* @param w, weight of edge
*/
public void add(String s, String t, int w){
Vertex v3, v4;
v3 = exists(new Vertex(s));
v4 = exists(new Vertex(t));
Edge e;
if(v3 == null && v4 == null){
v3 = new Vertex(s);
v4 = new Vertex(t);
vert.add(v3);
vert.add(v4);
e = new Edge(v3, v4, w);
v3.addList(e);
v4.addList(e);
}
else if(v3 != null && v4 == null){
counter--;
v4 = new Vertex(t);
vert.add(v4);
e = new Edge(v3, v4, w);
v3.addList(e);
v4.addList(e);
}
else if(v3 == null && v4 !=null){
counter--;
v3 = new Vertex(s);
vert.add(v3);
e = new Edge(v3, v4, w);
v3.addList(e);
v4.addList(e);
}
else{
counter -= 2;
e = new Edge(v3, v4, w);
if(!v3.exists(e)){
v3.addList(e);
v4.addList(e);
}
}
allEdges[edges] = e;
edges++;
}
/**
* Determines if an edge already exists
* @param vertex to be checked
* @return vertex if exists, null if not
*/
public Vertex exists(Vertex v){
for(int i = 0; i < vert.size(); i++){
if(v.getIp().equals(vert.get(i).getIp()))
return vert.get(i);
}
counter--;
return null;
}
/**
* Puts vert ArrayList into an array
* @return String array of vert
*/
public String[] toArray(){
String[] all = new String[vert.size()];
for(int i = 0; i < vert.size(); i++){
all[i] = vert.get(i).toString();
}
return all;
}
/**
* Determines if a vertex is adjacent to another vertex
* @return String array of adjacent verticies
*/
public String[] adjaceny(){
String[] all = new String[vert.size()];
Vertex v1;
for(int i = 0; i < vert.size(); i++){
v1 = vert.get(i);
all[i] = v1.getEdges();
}
return all;
}
/**
* Determines which vertex is in which cluster
* @return String array of clusters
*/
/*
public String[] cluster(){
Vertex[] temp = (Vertex[]) vert.toArray();
Sorter sort = new Sorter();
sort.heapsort(temp);
String[] cluster = new String[vert.size()];
int[] verts = new int[vert.size()];
for(int i = 0; i < vert.size();i++)
verts[i] = i;
return null;
}
*/
/**
* Gets the max spanning tree of the graph
* @return spanning tree of graph
*/
public String[] maxTree(){
sortEdges();
String[] max = new String[vert.size() -1];
Edge e;
for(int i = 0; i < vert.size()-1; i++){
e = allEdges[i];
max[i] = e.getStart().getId() + ", " + e.getFinish().getId() + ", " + e.getWeight();
}
return max;
}
/**
* Sorts edges by max weight
*/
private void sortEdges(){
Sorter sort = new Sorter();
sort.heapsort(allEdges);
}
public class Sorter{
/**
* Heapsorts the Object array
* @param Object array to be sorted
*/
public void heapsort(Object[] a)
{
for(int i = edges / 2; i >= 0; i-- ) /* buildHeap */
percDown(a, i, edges);
for( int i = edges - 1; i > 0; i-- )
{
swapReferences( a, 0, i ); /* deleteMax */
percDown( a, 0, i );
}
}
/**
* Performs swapping of elements
* @param Object array
* @param index1
* @param index2
*/
public void swapReferences(Object[] a, int index1, int index2 )
{
if(a[0] instanceof Edge){
Edge tmp = (Edge)a[index1];
a[index1] = a[index2];
a[index2] = tmp;
}
else if(a[0] instanceof Vertex){
Vertex temp = (Vertex)a[index1];
a[index1] = a[index2];
a[index2] = temp;
}
}
/**
* Internal method for heapsort.
* @param i the index of an item in the heap.
* @return the index of the left child.
*/
private int leftChild(int i)
{
return 2 * i + 1;
}
/**
* Internal method for heapsort that is used in
* deleteMax and buildHeap.
* @param a an array of Comparable items.
* @int i the position from which to percolate down.
* @int n the logical size of the binary heap.
*/
private void percDown(Object[] a, int i, int n)
{
int child;
if(a[0] instanceof Edge){
Edge tmp;
for( tmp = (Edge) a[i]; leftChild(i) < n; i = child )
{
child = leftChild(i);
if( child != n - 1 && ((Edge)a[child]).getWeight() - ((Edge)(a[child + 1])).getWeight() > 0 )
child++;
if(tmp.getWeight() - ((Edge)a[child]).getWeight() > 0 )
a[i] = a[child];
else
break;
}
a[i] = tmp;
}
else if(a[0] instanceof Vertex){
Vertex temp;
for(temp = (Vertex) a[i]; leftChild(i) < n; i = child){
child = leftChild(i);
if(child != n-1 && ((Vertex)a[child]).edgeSize() - ((Vertex)a[child+1]).edgeSize() > 0)
child++;
if(temp.edgeSize() - ((Vertex)a[child]).edgeSize() > 0)
a[i] = a[child];
else
break;
}
a[i] = temp;
}
}
}
}
}
主要内容包括:
import java.util.*;
import java.io.*;
public class pg6main {
public static void main(String[] args) throws IOException{
String filename;
String first, second;
int weight;
Graph2 graph = new Graph2();
Scanner kb = new Scanner(System.in);
boolean go = false;
Scanner infile = null;
PrintWriter outfile = new PrintWriter(new FileWriter("results.txt"));
do{
try{
System.out.print("Enter a file to read from: ");
filename = kb.nextLine();
infile = new Scanner(new FileReader(filename));
}catch(Exception e){
go = true;
System.out.println("file doesn't exist");
}
}while(go);
while(infile.hasNext()){
first = infile.next().trim();
second = infile.next().trim();
weight = Integer.parseInt(infile.nextLine().trim());
graph.add(first, second, weight);
}
outfile.println("IP and their unique IDs: ");
String[] a = graph.toArray();
for(int i = 0; i < a.length; i++)
outfile.println(a[i]);
outfile.println("Adjaceny List: ");
String[] adj = graph.adjaceny();
for(int j = 0; j < adj.length; j++)
outfile.println(j + ": " + adj[j]);
outfile.println("Max spanning tree: ");
String[] max = graph.maxTree();
for(int k = 0; k < max.length; k++)
outfile.println("(" + max[k] + ") ");
/*
//Attempting to do clusters based on length of string of neighbors, does not work
for(int x = 0; x < adj.length; x++){
if(adj[x].length() > adj[x+1].length()){
outfile.println("WHAT I DID: " + adj[x]);
}
else if(adj[x].length() == adj[x+1].length()){
adj[x] = adj[x+1];
outfile.println("WHAT I DID: " + adj[x]);
}
else if(adj[x].length() < adj[x+1].length()){
adj[x] = adj[x+1];
outfile.println("WHAT I DID: " + adj[x]);
}
*/
/*//Attempted to do neighbors slighly different way
String[] cluster = graph.cluster();
for(int x = 0; x < cluster.length; x++){
if(cluster[x] != null)
outfile.println(cluster[x]);
*/
outfile.close();
}//end main
}//end pg6main
我想知道是否有人可以提供帮助,直到今天我才使用过图表。到目前为止,我相信我的代码按预期工作,但我的逻辑可能存在一些错误。基本上我的问题是 Dijkstra 的大多数实现都有参数作为图表,我不确定这是否真的是我应该这样做的方式。感谢您的任何帮助。
This is for a data structures class in java, and I need to create a graph that reads text input, converts this information into a graph, and from there print the adjacency list and print a max spanning tree, which I have done. However, the final aspect is to
The full routing table that your program must produce will have for every pair [i,j] (i != j) of computers in the network, the first computer on an optimum route from i to j. If i and j have a direct connection, then j will be the result (table entry) for that route (pair [i,j]). If the optimum route from i to j is i -> a -> b -> j, then a will be the result (table entry) for that route. One could then construct the route by looking at the value from [i,j] (=a), then [a,j] (=b), then [b,j] (=j).
So basically Dijksta's algorithm. However, I cannot use any Java APIs that deal with graphs (all others are allowed). So far I have
import java.util.ArrayList;
//import java.util.Stack;
public class Graph2 {
ArrayList<Vertex> vert = new ArrayList<Vertex>();
private static int counter = 0;
private int edges;
private Edge[] allEdges = new Edge[50];
private class Vertex{
String ip;
private int id;
ArrayList<Edge> nb = new ArrayList<Edge>();
/**
* Constructor for Vertex
* @param String of IP
*/
public Vertex(String s){
ip = s;
id = counter;
counter++;
}
/**
* Gets the ID of a vertex
* @return unique ID
*/
public int getId(){
return id;
}
/*
public boolean isSame(Vertex v){
if(this.ip.equals(v.getIp()))
return true;
else
return false;
}
*/
/**
* Gets the IP of a vertex
* @return the IP of the vertex
*/
public String getIp(){
return this.ip;
}
/**
* Adds an edge to nb
* @param edge to be added
*/
public void addList(Edge e){
nb.add(e);
}
/**
* Determines if an edge exists
* @param edge to be checked
* @return true if exists, false if not
*/
public boolean exists(Edge e){
if(nb.indexOf(e) != -1){
return true;
}
else
return false;
}
/**
* Gets the size of an edge
* @return size of edge
*/
public int edgeSize(){
return nb.size();
}
/**
* Gets the edges
* @return String of edges
*/
public String getEdges(){
String all = "";
Edge e;
for(int i = 0; i < nb.size(); i++){
e = nb.get(i);
int ti = this.getId();
int fin = e.getFinish().getId();
if(ti == fin)
all += e.getStart().getId() + " ";
else
all += e.getFinish().getId() + " ";
}
return all;
}
/**
* Overrides toString method
* @return ID and IP of vertex
*/
public String toString(){
return id + " " + " " + ip;
}
}
private class Edge{
int weight;
Vertex finish;
Vertex start;
/**
* Constructor of Edge
* @param vertex 1, start vertex
* @param vertex 2, endpoint vertex
* @param weight of edge
*/
public Edge(Vertex v, Vertex v2, int w){
start = v;
finish = v2;
weight = w;
}
/**
* Gets the start of an edge
* @return edge start
*/
public Vertex getStart(){
return start;
}
/**
* Gets the endpoint of an edge
* @return endpoint of edge
*/
public Vertex getFinish(){
return finish;
}
/**
* Gets the weight of an edge
* @return weight of edge
*/
public int getWeight(){
return weight;
}
/**
* Overrides toString
* @return start of edge and endpoint of edge
*/
public String toString(){
return start + " " + finish;
}
}
/**
* Adds an edge to 2 verticies
* @param s, starting vertex IP
* @param t, enpoint vertex IP
* @param w, weight of edge
*/
public void add(String s, String t, int w){
Vertex v3, v4;
v3 = exists(new Vertex(s));
v4 = exists(new Vertex(t));
Edge e;
if(v3 == null && v4 == null){
v3 = new Vertex(s);
v4 = new Vertex(t);
vert.add(v3);
vert.add(v4);
e = new Edge(v3, v4, w);
v3.addList(e);
v4.addList(e);
}
else if(v3 != null && v4 == null){
counter--;
v4 = new Vertex(t);
vert.add(v4);
e = new Edge(v3, v4, w);
v3.addList(e);
v4.addList(e);
}
else if(v3 == null && v4 !=null){
counter--;
v3 = new Vertex(s);
vert.add(v3);
e = new Edge(v3, v4, w);
v3.addList(e);
v4.addList(e);
}
else{
counter -= 2;
e = new Edge(v3, v4, w);
if(!v3.exists(e)){
v3.addList(e);
v4.addList(e);
}
}
allEdges[edges] = e;
edges++;
}
/**
* Determines if an edge already exists
* @param vertex to be checked
* @return vertex if exists, null if not
*/
public Vertex exists(Vertex v){
for(int i = 0; i < vert.size(); i++){
if(v.getIp().equals(vert.get(i).getIp()))
return vert.get(i);
}
counter--;
return null;
}
/**
* Puts vert ArrayList into an array
* @return String array of vert
*/
public String[] toArray(){
String[] all = new String[vert.size()];
for(int i = 0; i < vert.size(); i++){
all[i] = vert.get(i).toString();
}
return all;
}
/**
* Determines if a vertex is adjacent to another vertex
* @return String array of adjacent verticies
*/
public String[] adjaceny(){
String[] all = new String[vert.size()];
Vertex v1;
for(int i = 0; i < vert.size(); i++){
v1 = vert.get(i);
all[i] = v1.getEdges();
}
return all;
}
/**
* Determines which vertex is in which cluster
* @return String array of clusters
*/
/*
public String[] cluster(){
Vertex[] temp = (Vertex[]) vert.toArray();
Sorter sort = new Sorter();
sort.heapsort(temp);
String[] cluster = new String[vert.size()];
int[] verts = new int[vert.size()];
for(int i = 0; i < vert.size();i++)
verts[i] = i;
return null;
}
*/
/**
* Gets the max spanning tree of the graph
* @return spanning tree of graph
*/
public String[] maxTree(){
sortEdges();
String[] max = new String[vert.size() -1];
Edge e;
for(int i = 0; i < vert.size()-1; i++){
e = allEdges[i];
max[i] = e.getStart().getId() + ", " + e.getFinish().getId() + ", " + e.getWeight();
}
return max;
}
/**
* Sorts edges by max weight
*/
private void sortEdges(){
Sorter sort = new Sorter();
sort.heapsort(allEdges);
}
public class Sorter{
/**
* Heapsorts the Object array
* @param Object array to be sorted
*/
public void heapsort(Object[] a)
{
for(int i = edges / 2; i >= 0; i-- ) /* buildHeap */
percDown(a, i, edges);
for( int i = edges - 1; i > 0; i-- )
{
swapReferences( a, 0, i ); /* deleteMax */
percDown( a, 0, i );
}
}
/**
* Performs swapping of elements
* @param Object array
* @param index1
* @param index2
*/
public void swapReferences(Object[] a, int index1, int index2 )
{
if(a[0] instanceof Edge){
Edge tmp = (Edge)a[index1];
a[index1] = a[index2];
a[index2] = tmp;
}
else if(a[0] instanceof Vertex){
Vertex temp = (Vertex)a[index1];
a[index1] = a[index2];
a[index2] = temp;
}
}
/**
* Internal method for heapsort.
* @param i the index of an item in the heap.
* @return the index of the left child.
*/
private int leftChild(int i)
{
return 2 * i + 1;
}
/**
* Internal method for heapsort that is used in
* deleteMax and buildHeap.
* @param a an array of Comparable items.
* @int i the position from which to percolate down.
* @int n the logical size of the binary heap.
*/
private void percDown(Object[] a, int i, int n)
{
int child;
if(a[0] instanceof Edge){
Edge tmp;
for( tmp = (Edge) a[i]; leftChild(i) < n; i = child )
{
child = leftChild(i);
if( child != n - 1 && ((Edge)a[child]).getWeight() - ((Edge)(a[child + 1])).getWeight() > 0 )
child++;
if(tmp.getWeight() - ((Edge)a[child]).getWeight() > 0 )
a[i] = a[child];
else
break;
}
a[i] = tmp;
}
else if(a[0] instanceof Vertex){
Vertex temp;
for(temp = (Vertex) a[i]; leftChild(i) < n; i = child){
child = leftChild(i);
if(child != n-1 && ((Vertex)a[child]).edgeSize() - ((Vertex)a[child+1]).edgeSize() > 0)
child++;
if(temp.edgeSize() - ((Vertex)a[child]).edgeSize() > 0)
a[i] = a[child];
else
break;
}
a[i] = temp;
}
}
}
}
}
With a main consisting of:
import java.util.*;
import java.io.*;
public class pg6main {
public static void main(String[] args) throws IOException{
String filename;
String first, second;
int weight;
Graph2 graph = new Graph2();
Scanner kb = new Scanner(System.in);
boolean go = false;
Scanner infile = null;
PrintWriter outfile = new PrintWriter(new FileWriter("results.txt"));
do{
try{
System.out.print("Enter a file to read from: ");
filename = kb.nextLine();
infile = new Scanner(new FileReader(filename));
}catch(Exception e){
go = true;
System.out.println("file doesn't exist");
}
}while(go);
while(infile.hasNext()){
first = infile.next().trim();
second = infile.next().trim();
weight = Integer.parseInt(infile.nextLine().trim());
graph.add(first, second, weight);
}
outfile.println("IP and their unique IDs: ");
String[] a = graph.toArray();
for(int i = 0; i < a.length; i++)
outfile.println(a[i]);
outfile.println("Adjaceny List: ");
String[] adj = graph.adjaceny();
for(int j = 0; j < adj.length; j++)
outfile.println(j + ": " + adj[j]);
outfile.println("Max spanning tree: ");
String[] max = graph.maxTree();
for(int k = 0; k < max.length; k++)
outfile.println("(" + max[k] + ") ");
/*
//Attempting to do clusters based on length of string of neighbors, does not work
for(int x = 0; x < adj.length; x++){
if(adj[x].length() > adj[x+1].length()){
outfile.println("WHAT I DID: " + adj[x]);
}
else if(adj[x].length() == adj[x+1].length()){
adj[x] = adj[x+1];
outfile.println("WHAT I DID: " + adj[x]);
}
else if(adj[x].length() < adj[x+1].length()){
adj[x] = adj[x+1];
outfile.println("WHAT I DID: " + adj[x]);
}
*/
/*//Attempted to do neighbors slighly different way
String[] cluster = graph.cluster();
for(int x = 0; x < cluster.length; x++){
if(cluster[x] != null)
outfile.println(cluster[x]);
*/
outfile.close();
}//end main
}//end pg6main
I was wondering if anyone could help, I've never worked with graphs until today. So far, I believe my code works as intended, but there could potentially be some errors with my logic. Basically my issue is most of the implementations of Dijkstra's have parameters as a graph, and I am unsure if this is actually how I should be doing this. Thanks for any help.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
您应该使用 Floyd 算法,它会为您提供完整的最短路线表,与您完全一样要求中描述。
正如您从伪代码中看到的,它非常简单,您所需要做的就是创建一个二维数组并用边对其进行初始化。 (所以基本上这是你的加权邻接表。)
You should use the Floyd algorithm instead, it gives you a full table of shortest routes, exactly as you described in the requirements.
As you can see from the pseudocode, it's really simple and all you need is to create a two-dimensional array and initialise it with the edges. (So basically it's your weighted adjacency table.)