NIntegrate - 为什么在这种情况下 Mathematica 8 的速度要慢得多?

发布于 2024-12-20 22:07:24 字数 476 浏览 1 评论 0原文

我有一个 Mathematica 代码,我必须在数值上评估数千个与此类似的积分。

NIntegrate[
    (Pi*Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] + 
    Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), 
    {x, 0, 100}, {y, 0, 100}
] //AbsoluteTiming

被积函数是一个很好的绝对可积函数,没有奇点,它在一个方向上呈指数衰减,在另一个方向上以 1/y^3 衰减。

NIntegrate 命令在 Mathematica 7 中运行良好,但在最新版本 8.0.4 中速度减慢了两个数量级。我认为在新版本中它试图更好地控制错误,但代价是时间的巨大增加。我是否可以使用一些设置,以便以与 Mathematica 7 中相同的速度进行计算?

I have a Mathematica code where I have to evaluate numerically thousands of integrals similar to this one

NIntegrate[
    (Pi*Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] + 
    Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), 
    {x, 0, 100}, {y, 0, 100}
] //AbsoluteTiming

The integrand is a nice absolutely integrable function without singularities, which decays exponentially in one direction and as 1/y^3 in the other direction.

The NIntegrate command was working fine in Mathematica 7, but in the newest version 8.0.4 it slows down by two orders of magnitude. I assume in the new version it tries to better control the error, but at the expense of this tremendous increase in time. Are there some settings I could use so that the computation proceeds with the same speed as in Mathematica 7?

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

怕倦 2024-12-27 22:07:24

ruebenko的回答以及user1091201Leonid的评论结合起来给出了正确的答案。

ruebenko编辑 1 答案是针对此类一般情况的正确第一个答案,即添加选项 Method -> ; {“SymbolicPreprocessing”,“OscillatorySelection”-> False}

expr = (Pi*
      Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] +
         Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y));

NIntegrate[expr, {x, 0, 100}, {y, 0, 100}, 
  Method -> {"SymbolicPreprocessing", 
    "OscillatorySelection" -> False}] // AbsoluteTiming

user1091201 的评论建议 Method -> “GaussKronrodRule” 接近这个特定问题的最快答案。

我将在这个特定示例中描述 NIntegrate 中发生的情况,并在此过程中提供一些有关处理一般情况下明显相似情况的提示。

方法选择

在此示例中,NIntegrate 检查 expr,得出多维“LevinRule”是该被积函数的最佳方法的结论,并应用它。然而,对于这个特定的示例,“LevinRule”比“MultiDimensionalRule”慢(尽管“LevinRule”获得了更令人满意的误差估计)。 “LevinRule”也比任何在二维上迭代的高斯型一维规则慢,例如 user1091201 发现的“GaussKronrodRule”。

NIntegrate 在对被积函数执行一些符号分析后做出决定。应用了多种类型的符号预处理;设置方法-> {“SymbolicPreprocessing”,“OscillatorySelection”-> False} 禁用一种类型的符号预处理。

本质上,启用“OscillatorySelection”后,NIntegrate 选择“LevinRule”。禁用“OscillatorySelection”后,NIntegrate 选择“MultiDimensionalRule”,该积分速度更快,尽管我们可能不信任基于消息 NIntegrate::slwcon 的结果,该消息表明观察到异常缓慢的收敛。

这是 Mathematica 8 与 Mathematica 7 不同的部分:Mathematica 8 在“OscillatorySelection”中添加了“LevinRule”和相关的方法选择启发式。

除了使 NIntegrate 选择不同的方法之外,禁用“OscillatorySelection”还可以节省实际符号处理所花费的时间,这在某些情况下可能很重要。

设置方法-> “GaussKronrodRule”覆盖并跳过与方法选择相关的符号处理,而是使用二维笛卡尔积规则Method -> {“笛卡尔规则”,方法-> {“GaussKronrodRule”,“GaussKronrodRule”}}。对于这个积分来说,这恰好是一种非常快速的方法。

其他符号处理

两个ruebenko方法 -> {“SymbolicPreprocessing”,“OscillatorySelection”-> False}user1091201Method -> “GaussKronrodRule” 不会禁用其他形式的符号处理,这通常是一件好事。有关符号类型的列表,请参阅NIntegrate 高级文档的这一部分可以应用的预处理。特别是,“SymbolicPiecewiseSubdivision”对于由于分段函数的存在而在多个点上不可解析的被积函数非常有价值。

要禁用所有符号处理并仅获取具有默认方法选项的默认方法,请使用Method ->; {自动,“SymbolicProcessing”-> 0}。对于一维积分,目前相当于方法 -> {“GlobalAdaptive”,方法-> "GaussKronrodRule"} 具有这些方法的所有参数的某些默认设置(规则中的插值点数量、全局自适应策略的奇点处理类型等)。对于多维积分,目前相当于Method -> {“GlobalAdaptive”,方法-> “MultiDimensionalRule”},同样具有某些默认参数值。对于高维积分,将使用蒙特卡罗方法。

我不建议直接切换到 Method -> {自动,“SymbolicProcessing”-> 0} 作为 NIntegrate 的第一个优化步骤,但它在某些情况下可能很有用。

最快的方法

几乎总是有某种方法可以至少加快一点,有时甚至很多,因为有太多的参数是启发式选择的,您无法可能会从调整中受益。 (查看 "LevinRule" 方法"GlobalAdaptive" 策略 具有,包括其所有子方法等。)

也就是说,这是我为这个特定积分找到的最快方法:(

NIntegrate[(Pi*
      Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] +
         Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), {x, 0, 
   100}, {y, 0, 100}, 
  Method -> {"GlobalAdaptive", Method -> "GaussKronrodRule", 
    "SingularityDepth" -> Infinity}] // AbsoluteTiming

设置 "SingularityDepth" - > Infinity 禁用奇点处理转换。)

积分范围

顺便说一下,您想要的积分范围真的是 {x, 0, 100}, {y, 0, 100},还是 {x, 0, Infinity}, {y, 0, Infinity} 是您的应用真正所需的积分范围?

如果您确实需要 {x, 0, Infinity}, {y, 0, Infinity},我建议改用它。对于无限长度的积分范围,NIntegrate 将被积函数压缩到有限范围,以几何间隔的方式有效地对其进行采样。这通常比用于有限积分范围的线性(均匀)间隔样本要高效得多。

ruebenko's answer and the comments from user1091201 and Leonid together combine to give the right answers.

The Edit 1 answer by ruebenko is the right first answer for general situations like this, that is, add the option Method -> {"SymbolicPreprocessing", "OscillatorySelection" -> False}:

expr = (Pi*
      Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] +
         Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y));

NIntegrate[expr, {x, 0, 100}, {y, 0, 100}, 
  Method -> {"SymbolicPreprocessing", 
    "OscillatorySelection" -> False}] // AbsoluteTiming

And user1091201's comment suggesting Method -> "GaussKronrodRule" is close to the fastest possible answer for this specific problem.

I'll describe what is happening in NIntegrate in this specific example and along the way give some tips on handling apparently similar situations in general.

Method Selection

In this example, NIntegrate examines expr, comes to the conclusion that multidimensional "LevinRule" is the best method for this integrand, and applies it. However, for this particular example, "LevinRule" is slower than "MultidimensionalRule" (though "LevinRule" gets a more satisfactory error estimate). "LevinRule" is also slower than any of several Gauss-type one-dimensional rules iterated over the two dimensions, such as "GaussKronrodRule" which user1091201 found.

NIntegrate makes its decision after performing some symbolic analysis of the integrand. There are several types of symbolic pre-processing applied; the setting Method -> {"SymbolicPreprocessing", "OscillatorySelection" -> False} disables one type of symbolic pre-processing.

Essentially, with "OscillatorySelection" enabled, NIntegrate selects "LevinRule". With "OscillatorySelection" disabled, NIntegrate selects "MultidimensionalRule", which is faster for this integral, although we may distrust the result based the message NIntegrate::slwcon which indicates unusually slow convergence was observed.

This is the part where Mathematica 8 differs from Mathematica 7: Mathematica 8 adds "LevinRule" and associated method selection heuristics into "OscillatorySelection".

Aside from causing NIntegrate to select a different method, disabling "OscillatorySelection" also saves the time spent doing the actual symbolic processing, which can be significant in some cases.

Setting Method -> "GaussKronrodRule" overrides and skips the symbolic processing associated with method selection, and instead uses the 2-D cartesian product rule Method -> {"CartesianRule", Method -> {"GaussKronrodRule", "GaussKronrodRule"}}. This happens to be a very fast method for this integral.

Other Symbolic Processing

Both ruebenko's Method -> {"SymbolicPreprocessing", "OscillatorySelection" -> False} and user1091201's Method -> "GaussKronrodRule" do not disable other forms of symbolic processing, and this is generally a good thing. See this part of the NIntegrate advanced documentation for a list of types of symbolic preprocessing that may be applied. In particular, "SymbolicPiecewiseSubdivision" is very valuable for integrands that are non-analytic at several points due to the presence of piecewise functions.

To disable all symbolic processing and get only default methods with default method options, use Method -> {Automatic, "SymbolicProcessing" -> 0}. For one-dimensional integrals this currently amounts to Method -> {"GlobalAdaptive", Method -> "GaussKronrodRule"} with certain default settings for all parameters of those methods (number of interpolation points in the rule, type of singularity handling for the global-adaptive strategy, etc). For multi-dimensional integrals, it currently amounts to Method -> {"GlobalAdaptive", Method -> "MultidimensionalRule"}, again with certain default parameter values. For high-dimensional integrals, a monte-carlo method will be used.

I don't recommend switching straight to Method -> {Automatic, "SymbolicProcessing" -> 0} as a first optimization step for NIntegrate, but it can be useful in some cases.

Fastest method

There is just about always some way to speed up a numerical integration at least a bit, sometimes a lot, since there are so many parameters that are chosen heuristically that you may benefit from tweaking. (Look at the different options and parameters that the "LevinRule" method or the "GlobalAdaptive" strategy has, including all their sub-methods etc.)

That said, here is the fastest method I found for this particular integral:

NIntegrate[(Pi*
      Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] +
         Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), {x, 0, 
   100}, {y, 0, 100}, 
  Method -> {"GlobalAdaptive", Method -> "GaussKronrodRule", 
    "SingularityDepth" -> Infinity}] // AbsoluteTiming

(The setting "SingularityDepth" -> Infinity disables singularity handling transformations.)

Integration range

By the way, is your desired integration range really {x, 0, 100}, {y, 0, 100}, or is {x, 0, Infinity}, {y, 0, Infinity} the true desired integration range for your application?

If you really require {x, 0, Infinity}, {y, 0, Infinity}, I suggest using that instead. For infinite-length integration ranges, NIntegrate compactifies the integrand to a finite range, effectively samples it in a geometrically-spaced way. This is usually much more efficient than linear (evenly) spaced samples that are used for finite integration ranges.

半世蒼涼 2024-12-27 22:07:24

这是一个解决方法:

NIntegrate[(Pi*
      Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] +
         Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), {x, 0, 
   100}, {y, 0, 100}, 
  Method -> "AdaptiveMonteCarlo"] // AbsoluteTiming

您还可以使用 ParallelTry 并行测试各种方法。

当实施新方法或修改启发式方法时,特定参数的速度可能会降低。这些可能有助于解决一类新的问题,但代价是其他一些问题会变得更慢。人们必须准确调查这里到底发生了什么。

您可能想更改问题的主题 - 它表明所有积分在 V8 中计算速度较慢,但​​事实并非如此。

编辑1
我认为它陷入了 LevinRule(V8 中用于振荡被积函数的新功能),所以我认为,这应该将其关闭。

NIntegrate[(Pi*
      Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] +
         Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), {x, 0, 
   100}, {y, 0, 100}, 
  Method -> {"SymbolicPreprocessing", 
    "OscillatorySelection" -> False}] // AbsoluteTiming

Here is a workaround:

NIntegrate[(Pi*
      Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] +
         Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), {x, 0, 
   100}, {y, 0, 100}, 
  Method -> "AdaptiveMonteCarlo"] // AbsoluteTiming

You can also use ParallelTry to tests various methods in parallel.

Slowdowns for specific arguments can happen when new methods are implemented or heuristics are modified. Those may help to solve a new class of problems at the expense that some others get slower. One would have to investigate exactly what is going on here.

You might want to change the topic of your question - it indicates that all integrals evaluate slower in V8 which is not true.

Edit 1:
I think it get's stuck in LevinRule (new in V8 for oscillatory integrands) so, I think, this should switch that off.

NIntegrate[(Pi*
      Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + y)*(-Sin[(2*Pi*x)/(1 + y)] +
         Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), {x, 0, 
   100}, {y, 0, 100}, 
  Method -> {"SymbolicPreprocessing", 
    "OscillatorySelection" -> False}] // AbsoluteTiming
一指流沙 2024-12-27 22:07:24

对于这个特定的积分,罪魁祸首似乎是对 x 的积分,这可能是由于快速衰减项和高振荡项的存在。另外,对于这种情况,可以通过分析方式对 x 进行积分:(

In[92]:= 
-Integrate[(Pi*Cos[(Pi*(-2*x+y))/(1+y)]+(1+y)*(-Sin[(2*Pi*x)/(1+y)]+Sin[(Pi*(-2*x+y))/(1+y)]))/
 (E^x*  (1+y)),x]/.x->0//FullSimplify

Out[92]= (-\[Pi] (1+y) (2+Cos[(\[Pi] y)/(1+y)])+(2 \[Pi]^2+(1+y)^2) Sin[(\[Pi] y)/(1+y)])/
(4 \[Pi]^2+(1+y)^2)

我丢弃了上限的值,因为它对于 y 来说都非常小)。然后可以对 y 进行数字积分以获得正确的结果:

In[94]:= NIntegrate[%,{y,0,100}]
Out[94]= 1.17525

一种更通用的解决方法是拆分 xy 积分,如下所示:

ClearAll[f];
f[y_?NumericQ, xrange : {_?NumericQ, _?NumericQ}] :=
  NIntegrate[(Pi*
   Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + 
     y)*(-Sin[(2*Pi*x)/(1 + y)] + 
     Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), {x, First@xrange, Last@xrange}];

然后我们就得到了:

In[105]:= NIntegrate[f[y,{0,100}],{y,0,100}]//Timing
Out[105]= {2.578,1.17525}

这不是极快的速度,但相当快。此过程并不总是那么有效(因为由此过程产生的 2D 积分网格并不总是最优的),但当被积函数使得 x 和 < code>y 已充分“解耦”。

For this particular integral, the main culprit seems to be the integration over x, probably due to the presence of both fast-decaying and highly-oscillating terms. Also, for this case, one can do the integration over x analytically:

In[92]:= 
-Integrate[(Pi*Cos[(Pi*(-2*x+y))/(1+y)]+(1+y)*(-Sin[(2*Pi*x)/(1+y)]+Sin[(Pi*(-2*x+y))/(1+y)]))/
 (E^x*  (1+y)),x]/.x->0//FullSimplify

Out[92]= (-\[Pi] (1+y) (2+Cos[(\[Pi] y)/(1+y)])+(2 \[Pi]^2+(1+y)^2) Sin[(\[Pi] y)/(1+y)])/
(4 \[Pi]^2+(1+y)^2)

(I discarded the value on the upper limit, since it is uniformly very small for y). One can then integrate over y numerically to get the right result:

In[94]:= NIntegrate[%,{y,0,100}]
Out[94]= 1.17525

A more general workaround would be to split the x and y integration like so:

ClearAll[f];
f[y_?NumericQ, xrange : {_?NumericQ, _?NumericQ}] :=
  NIntegrate[(Pi*
   Cos[(Pi*(-2*x + y))/(1 + y)] + (1 + 
     y)*(-Sin[(2*Pi*x)/(1 + y)] + 
     Sin[(Pi*(-2*x + y))/(1 + y)]))/(E^x*(1 + y)), {x, First@xrange, Last@xrange}];

and then we have:

In[105]:= NIntegrate[f[y,{0,100}],{y,0,100}]//Timing
Out[105]= {2.578,1.17525}

which is not blazing fast, but reasonably fast. This procedure won't always work so well (since the 2D integration grid resulting from this procedure won't always be optimal), but should work well enough when the integrand is such that integrations over x and y are sufficiently "decoupled".

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文