R glmnet :“(列表)对象不能被强制键入“double”; ”

发布于 2024-12-20 19:31:26 字数 1403 浏览 0 评论 0原文

我正在尝试在数据集上使用 glmnet 包。我正在使用 cv.glmnet() 获取 glmnet() 的 lambda 值。这是数据集和错误消息:

> head(t2)
  X1 X2        X3 X4 X5         X6    X7 X8 X9 X10 X11 X12
1  1  1 0.7661266 45  2 0.80298213  9120 13  0   6   0   2
2  2  0 0.9571510 40  0 0.12187620  2600  4  0   0   0   1
3  3  0 0.6581801 38  1 0.08511338  3042  2  1   0   0   0
4  4  0 0.2338098 30  0 0.03604968  3300  5  0   0   0   0
5  5  0 0.9072394 49  1 0.02492570 63588  7  0   1   0   0
6  6  0 0.2131787 74  0 0.37560697  3500  3  0   1   0   1
> str(t2)
'data.frame':   150000 obs. of  12 variables:
 $ X1 : int  1 2 3 4 5 6 7 8 9 10 ...
 $ X2 : int  1 0 0 0 0 0 0 0 0 0 ...
 $ X3 : num  0.766 0.957 0.658 0.234 0.907 ...
 $ X4 : int  45 40 38 30 49 74 57 39 27 57 ...
 $ X5 : int  2 0 1 0 1 0 0 0 0 0 ...
 $ X6 : num  0.803 0.1219 0.0851 0.036 0.0249 ...
 $ X7 : int  9120 2600 3042 3300 63588 3500 NA 3500 NA 23684 ...
 $ X8 : int  13 4 2 5 7 3 8 8 2 9 ...
 $ X9 : int  0 0 1 0 0 0 0 0 0 0 ...
 $ X10: int  6 0 0 0 1 1 3 0 0 4 ...
 $ X11: int  0 0 0 0 0 0 0 0 0 0 ...
 $ X12: int  2 1 0 0 0 1 0 0 NA 2 ...
> cv1 <- cv.glmnet(t2[,-c(1,2,7,12)], t2[,2], family="multinomial")
Error in lognet(x, is.sparse, ix, jx, y, weights, offset, alpha, nobs,  : 
  (list) object cannot be coerced to type 'double'

我排除了第 1、2、7、12 列,因为它们是:id 列、响应列、包含 NA 和包含 NA。任何建议都会很棒。

I'm trying to use the glmnet package on a dataset. I'm using cv.glmnet() to get a lambda value for glmnet(). Here's the dataset and error message:

> head(t2)
  X1 X2        X3 X4 X5         X6    X7 X8 X9 X10 X11 X12
1  1  1 0.7661266 45  2 0.80298213  9120 13  0   6   0   2
2  2  0 0.9571510 40  0 0.12187620  2600  4  0   0   0   1
3  3  0 0.6581801 38  1 0.08511338  3042  2  1   0   0   0
4  4  0 0.2338098 30  0 0.03604968  3300  5  0   0   0   0
5  5  0 0.9072394 49  1 0.02492570 63588  7  0   1   0   0
6  6  0 0.2131787 74  0 0.37560697  3500  3  0   1   0   1
> str(t2)
'data.frame':   150000 obs. of  12 variables:
 $ X1 : int  1 2 3 4 5 6 7 8 9 10 ...
 $ X2 : int  1 0 0 0 0 0 0 0 0 0 ...
 $ X3 : num  0.766 0.957 0.658 0.234 0.907 ...
 $ X4 : int  45 40 38 30 49 74 57 39 27 57 ...
 $ X5 : int  2 0 1 0 1 0 0 0 0 0 ...
 $ X6 : num  0.803 0.1219 0.0851 0.036 0.0249 ...
 $ X7 : int  9120 2600 3042 3300 63588 3500 NA 3500 NA 23684 ...
 $ X8 : int  13 4 2 5 7 3 8 8 2 9 ...
 $ X9 : int  0 0 1 0 0 0 0 0 0 0 ...
 $ X10: int  6 0 0 0 1 1 3 0 0 4 ...
 $ X11: int  0 0 0 0 0 0 0 0 0 0 ...
 $ X12: int  2 1 0 0 0 1 0 0 NA 2 ...
> cv1 <- cv.glmnet(t2[,-c(1,2,7,12)], t2[,2], family="multinomial")
Error in lognet(x, is.sparse, ix, jx, y, weights, offset, alpha, nobs,  : 
  (list) object cannot be coerced to type 'double'

I'm excluding columns 1,2,7,12 as they are: id column, response column, contain NA's, and contain NA's. Any suggestions would be great.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(1

凉墨 2024-12-27 19:31:26

cv.glmnet 需要预测变量矩阵,而不是数据框。一般来说,您可以通过以下方式获得此信息

X <- model.matrix(<formula>, data=<data>)

,但就您而言,您可能可以更轻松地到达那里,

X <- as.matrix(t2[,-c(1,2,7,12)])

因为您似乎没有任何因素变量或其他可能使问题复杂化的问题。


由于这个答案得到了大量点击: glmnetUtils 包 提供了一个基于公式的界面glmnet,就像用于大多数 R 建模函数的那样。它包括用于 glmnetcv.glmnet 的方法,以及一个新的 cva.glmnet 函数,用于对 alpha 和 lambda 进行交叉验证。

上面的内容将成为

cv.glmnet(X2 ~ ., data=t2[-1], family="multinomial")

NA 的自动处理,因此您不必排除缺少值的列。

cv.glmnet expects a matrix of predictors, not a data frame. Generally you can obtain this via

X <- model.matrix(<formula>, data=<data>)

but in your case, you can probably get there more easily with

X <- as.matrix(t2[,-c(1,2,7,12)])

since you don't appear to have any factor variables or other issues that might complicate matters.


Since this answer is getting plenty of hits: the glmnetUtils package provides a formula-based interface to glmnet, like that used for most R modelling functions. It includes methods for glmnet and cv.glmnet, as well as a new cva.glmnet function to do crossvalidation for both alpha and lambda.

The above would become

cv.glmnet(X2 ~ ., data=t2[-1], family="multinomial")

NA's are handled automatically, so you don't have to exclude columns with missing values.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文