如何将最相似的 Unicode 字符返回到图像的某个部分?
我用 Python 做了一个简单的转换器来将图像转换为 ASCII。现在它使用各种深浅的深色字符,所以它可以工作,但在低分辨率下很难辨认:例如,Google 徽标显示为:
.. .;. .@
a; .. .; . .. a. @ ...;.
aa .a.▒. ▒.;. ;.;; a. ▒ @a
.;.. .; ..... . ..;;; ; ;..
.a. .;
这几乎无法辨认。有没有一种方法可以将每个部分与 Unicode 字符的子集进行比较并返回最相似的部分,因此它可以返回类似以下内容的内容:
./--.\. /▒
a; ./-.; / \ ./ \\ ▒ ./━\.
aa -a.▒. ▒.|. |.;▒ ┃ ▒ ▒-~┘
\;.. /| \\_// \ / .\;;; ▒ \\.-
.pp--▒
I made a simple converter in Python to convert images to ASCII. Right now it uses various shades of dark characters, so it works but it is hard to make out at low resolutions: for example, the Google logo comes out as:
.. .;. .@
a; .. .; . .. a. @ ...;.
aa .a.▒. ▒.;. ;.;; a. ▒ @a
.;.. .; ..... . ..;;; ; ;..
.a. .;
This can barely be made out. Is there a way that I could compare each section to a subset of Unicode characters and return the most similar, so it could return for example something like:
./--.\. /▒
a; ./-.; / \ ./ \\ ▒ ./━\.
aa -a.▒. ▒.|. |.;▒ ┃ ▒ ▒-~┘
\;.. /| \\_// \ / .\;;; ▒ \\.-
.pp--▒
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
您可以通过对字符图像、输入图像或两者进行模糊处理来改善结果。您还可以通过增加输入图像的对比度来获得更好的结果。
提高结果质量和速度的另一个想法是计算每个字符的平均暗度,并且仅尝试匹配与补丁几乎相同暗度的字符。
You might improve the results by doing a blur on the character images, the input image, or both. You also might get better results by increasing the contrast on the input image.
Another idea to improve both result quality and speed would be to calculate the average darkness of each character, and only attempt to match characters that are nearly the same darkness as the patch.
这是一个旧线程,但我不妨在这里添加我的解决方案。您可以使用盲文字符来获得像素完美的表示。像这样:
<代码>
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡿⡻⡫⡫⡣⣣⢣⢇⢧⢫⢻⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡟⡟⣝⣜⠼⠼⢚⢚⢚⠓⠷⣧⣇⠧⡳⡱⣻⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡟⣏⡧⠧⠓⠍⡂⡂⠅⠌⠄⠄⠄⡁⠢⡈⣷⡹⡸⣪⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⢿⠿⢿⢿⢿⢟⢏⡧⠗⡙⡐⡐⣌⢬⣒⣖⣼⣼⣸⢸⢐⢁⠂⡐⢰⡏⣎⢮⣾⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣽⣾ ⣶⣿⢿⢻⡱⢕⠋⢅⠢⠱⢼⣾⣾⣿⣿⣿⣿⣿⣿⣿⡇⡇⠢⢁⢂⡯⡪⣪⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟ ⠏⢎⠪⠨⡐⠔⠁⠁⠀⠀⠀⠙⢿⣿⣿⣿⣿⣿⣿⣿⢱⠡⡁⣢⢏⢮⣾⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢍⢃ ⢑⠤⠑⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣿⣿⣿⣿⡿⡱⢑⢐⢼⢱⣵⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⢫⡱⢊⢂⢢⠢ ⡃⠌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣿⣿⢟⢑⢌⢦⢫⣪⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡻⡱⡑⢅⢢⣢⣳Ɫ⢑ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡑⡑⡴⡹⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢝⠜⠨⡐⣴⣵⣿⣗⡧⡣⠢ ⢈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣜⢎⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡫⡱⠑⡁⣌⣮⣾⣿⣿⣿⣟⡮⡪⡪ ⡐⠠⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⢏⠜⠌⠄⣕⣼⣿⣿⣿⣿⣿⣿⣯⡯⣎⢖ ⠌⠌⠄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢨⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢕⠕⢁⠡⣸⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⡽⡮⡪ ⡪⠨⡂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢕⠕⢁⢐⢔⣽⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢽⡱ ⡱⡑⡠⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢕⠕⢁⢐⢰⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣟⣞ ⢜⠔⢄⠡⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⡿⡹⡰⠃⢈⠠⣢⣿⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡮ ⣇⢏⢂⠢⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⢫⢒⡜⠐⠀⢢⣱⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣳⢕⢕⠌⠄⡀⠀⠀⢀⣤⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⡿⡑⣅⠗⠀⡀⣥⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⢙⠙⠿⣿⣿⣿⣿⣿⣿⣿ ⣿⣯⢮⡪⣂⣢⣬⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⡟⡜⢌⡞⡀⣡⣾⣿⣿⣿⣿⣿⣿⣿⡿⠛⠉⢀⡠⠔⢜⣱⣴⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⡿⡸⡘⢜⣧⣾⣿⣿⣿⣿⣿⣿⠿⢛⡡⠤⡒⢪⣑⣬⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⡇⡇⡣⣷⣿⣿⣿⣿⣿⠿⡛⡣⡋⣕⣬⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣮⣺⣿⣿⣟⣻⣩⣢⣵⣾⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿ ⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿
我在 Go 中为此构建了一个名为 dotmatrix 的工具: https://github.com/kevin -cantwell/点矩阵
This is an old thread, but I might as well add my solution here. You can use braille characters to get pixel-perfect representations. Like so:
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡿⡻⡫⡫⡣⣣⢣⢇⢧⢫⢻⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡟⡟⣝⣜⠼⠼⢚⢚⢚⠓⠷⣧⣇⠧⡳⡱⣻⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡟⣏⡧⠧⠓⠍⡂⡂⠅⠌⠄⠄⠄⡁⠢⡈⣷⡹⡸⣪⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⠿⢿⢿⢿⢟⢏⡧⠗⡙⡐⡐⣌⢬⣒⣖⣼⣼⣸⢸⢐⢁⠂⡐⢰⡏⣎⢮⣾⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣽⣾⣶⣿⢿⢻⡱⢕⠋⢅⠢⠱⢼⣾⣾⣿⣿⣿⣿⣿⣿⣿⡇⡇⠢⢁⢂⡯⡪⣪⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⠏⢎⠪⠨⡐⠔⠁⠁⠀⠀⠀⠙⢿⣿⣿⣿⣿⣿⣿⣿⢱⠡⡁⣢⢏⢮⣾⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢍⢆⢃⢑⠤⠑⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⣿⣿⣿⣿⡿⡱⢑⢐⢼⢱⣵⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⢫⡱⢊⢂⢢⠢⡃⠌⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⣿⣿⢟⢑⢌⢦⢫⣪⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡻⡱⡑⢅⢢⣢⣳⢱⢑⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⡑⡑⡴⡹⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢝⠜⠨⡐⣴⣵⣿⣗⡧⡣⠢⢈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣜⢎⣷⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⡫⡱⠑⡁⣌⣮⣾⣿⣿⣿⣟⡮⡪⡪⡐⠠⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⢏⠜⠌⠄⣕⣼⣿⣿⣿⣿⣿⣿⣯⡯⣎⢖⠌⠌⠄⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢨⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢕⠕⢁⠡⣸⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⡽⡮⡪⡪⠨⡂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢕⠕⢁⢐⢔⣽⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢽⡱⡱⡑⡠⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢟⢕⠕⢁⢐⢰⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣟⣞⢜⠔⢄⠡⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⡿⡹⡰⠃⢈⠠⣢⣿⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡮⣇⢏⢂⠢⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⢫⢒⡜⠐⠀⢢⣱⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣳⢕⢕⠌⠄⡀⠀⠀⢀⣤⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⡿⡑⣅⠗⠀⡀⣥⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠟⢙⠙⠿⣿⣿⣿⣿⣿⣿⣿⣿⣯⢮⡪⣂⣢⣬⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⡟⡜⢌⡞⡀⣡⣾⣿⣿⣿⣿⣿⣿⣿⡿⠛⠉⢀⡠⠔⢜⣱⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⡿⡸⡘⢜⣧⣾⣿⣿⣿⣿⣿⣿⠿⢛⡡⠤⡒⢪⣑⣬⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⡇⡇⡣⣷⣿⣿⣿⣿⣿⠿⡛⡣⡋⣕⣬⣶⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣮⣺⣿⣿⣟⣻⣩⣢⣵⣾⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿
⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿⠿
I built a tool for this in Go called dotmatrix: https://github.com/kevin-cantwell/dotmatrix
当你说
这并不是很清楚,因为有不止一种方法可以做到这一点。我会将比较降低到像素级别。在灰度图像中,每个像素都有一个灰度值。假设您想用适当的字符替换每个像素,如何使该字符与像素匹配?如果你从很远的地方看一个角色,你只会看到一个灰点。如果现在用字符替换像素,则应该选择与该像素灰度值最相似的字符。
在等宽字体中,每个字符使用相同的空间量。如果您现在占据这个矩形空间,在其上绘制一个字符,您可以计算平均灰度值。该平均灰度值不超过矩形的白色面积与整个矩形的面积之比。 空格的灰度值为1。也许美元符号是您能找到的最黑的字符之一。
所以这就是我要做的:
在 Mathematica 中,这只需几行代码。在 python 中,它可能会长一点,但也应该没问题。
使用这种方式,当您从远处查看文本时,您会得到非常惊人的结果,当您走近时,您会发现它全部由字符组成。
更新
当您想要创建相同的图像时大小与原始字母相同,那么方法并没有太大不同,但即使在这里,正如马克已经指出的那样,您也可以为您正在使用的每个字母创建光栅图像。
我真的没有找到一种更快的方法来将图像图块与字母进行比较来决定哪个是最合适的。
也许有一个提示:如果您使用这种方法,这些字母将在您的图像中可见,因为当您使用 12pt 字体时,每个字母的图像大小至少约为 10x15。现在,当您转换 1000x1500 的图像(不算小)时,您仅使用 100x100 字母。
因此,可能值得考虑的是不使用图像本身,而是使用图像渐变。这可能会提供更好的图像,因为然后选择一个字母,它很好地遵循边缘。
仅使用渐变,Google 徽标看起来并不那么糟糕
When you say
this is not really clear, because there is more than one way to do this. I would bring the comparing down to the level of pixel. In a gray image, every pixel has a gray-value. Assume you want to replace every pixel by an appropriate character, how has this character to match the pixel? If you look at a character from really far, you'll see only a gray spot. If you replace now a pixel with a character, you should choose the character with the most similar gray-value to that pixel.
In a monospaced font, every character uses the same amount of space. If you take now this rectangle of space, draw a character on it, you can calculate the mean gray-value. This mean gray-value is not more than how much area of the rectangle is white compared to the whole rectangle. A space has a gray-value of 1. And maybe a dollar-sign is one of the most black characters you'll find.
So here is what I would do:
In Mathematica this is only a few lines of code. In python it's maybe a bit longer, but it should be ok too.
Using this way, you get pretty amazing results when you look at the text from far away and when you get closer, you see that it all consists of characters.
Update
When you want to create an image of the same size as the original, then the approach is not very different but even here you have, as Mark already pointed out, to create a raster image of every letter you are using.
I don't really see a faster way of comparing your image-tiles with a letter to decide which one is the most appropriate.
Maybe one hint: If your using this approach, the letters will be visible in your image, because when you have e.g. a 12pt font, each letter will have at least an image-size of about 10x15. When you now convert an image of 1000x1500, which is not so small, you use only 100x100 letters.
Therefore, it might be worth a thought to not use the image itself but the image gradients. This may give better images, because then a letter is choosen, which follows the edges quite good.
Using only the gradients, the google logo doesn't look so bad