DFA 中具有“1”的最小状态数作为右数第 5 个符号

发布于 2024-12-19 10:29:53 字数 63 浏览 6 评论 0原文

DFA 接受“1”作为右数第 5 个符号的字符串所需的最少状态数是多少?字符串是通过字母表 {0,1} 定义的。

What is the minimum number of states needed in a DFA to accept the strings having '1' as 5th symbol from right? Strings are defined over the alphabet {0,1}.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

巷子口的你 2024-12-26 10:29:53

Myhill-Nerode 定理是解决此类问题的有用工具。

这个想法是使用“区分扩展”的思想来构建一组字符串的等价类。考虑两个字符串 x 和 y。如果存在字符串z
这样,xz 和 yz 恰好之一在该语言中,那么 z 是一个可区分的扩展,
x 和 y 必须属于不同的等价类。每个等价类映射到最小 DFA 中的不同状态。

对于您所描述的语言,令 x 和 y 为任意一对不同的 5 个字符的字符串
超过{0,1}。如果它们在位置 n 处不同(从右数,从 1 开始),则任何长度为 5-n 的字符串 z 将是一个有区别的扩展:如果 x 在位置 n 处有 0,
并且 y 在位置 n 处有一个 1,则 xz 被拒绝,yz 被接受。得出 25 = 32
等价类。

如果 s 是长度 k < 的字符串5个字符,属于同一个等价类
为 0(5-k)s(即向左侧添加 0 填充,直到达到 5 个字符长)。

如果s是长度k>的字符串5 个字符,其等价类由最后 5 个字符决定。

因此,所有超过 {0,1} 的字符串都属于上述 32 个等价类之一,并且根据 Myhill-Nerode 定理,该语言的最小 DFA 有 32 个状态。

The Myhill-Nerode theorem is a useful tool for solving these sorts of problems.

The idea is to build up a set of equivalence classes of strings, using the idea of "distinguishing extensions". Consider two strings x and y. If there exists a string z
such that exactly one of xz and yz is in the language, then z is a distinguishing extension,
and x and y must belong to different equivalence classes. Each equivalence class maps to a different state in the minimal DFA.

For the language you've described, let x and y be any pair of different 5-character strings
over {0,1}. If they differ at position n (counting from the right, starting at 1), then any string z with length 5-n will be a distinguishing extension: if x has a 0 at position n,
and y has a 1 at position n, then xz is rejected and yz is accepted. This gives 25 = 32
equivalence classes.

If s is a string with length k < 5 characters, it belongs to the same equivalence class
as 0(5-k)s (i.e. add 0-padding to the left until it's 5 characters long).

If s is a string with length k > 5 characters, its equivalence class is determined by its final 5 characters.

Therefore, all strings over {0,1} fall into one of the 32 equivalence classes described above, and by the Myhill-Nerode theorem, the minimal DFA for this language has 32 states.

状态数将为 2^n,其中 n 是从右数第 n 个符号
所以 2^5=32 将是没有状态

No of state will be 2^n where n is nth symbol from right
So 2^5=32 will be no of states

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文