简单图论术语

发布于 2024-12-19 07:45:53 字数 128 浏览 2 评论 0原文

我刚刚开始学习图论的基础知识,我的教科书对一个简单的概念有点不清楚。据我所知,术语“邻接”,给定一个无向图,如果 A 和 B 节点连接,A 与 B 相邻,B 与 A 相邻。我想知道给定一个有向图,这是否仍然正确A指向B?

谢谢

I'm just starting out to learn the basics of graph theory, and my textbook is a little unclear about a simple concept. The term "adjacency" as far as I understand, given a undirected graph, if A and B nodes are connected, A is adjacent to B, and B is adjacent to A. I was wondering if this was still true given a directed graph where A points to B?

Thanks

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(3

迷迭香的记忆 2024-12-26 07:45:53

看起来解释得很好,但提供了一些视觉效果。相邻边是相连的两个节点,有两种基本设置:

在无向图中,由一条边连接的两个节点 A 和 B 彼此相邻

undirected graph

在有向图中,两个节点 A 和 B 通过边连接 A B 意味着可以到达 B从A(或,B 毗邻 A):

有向图

It looks like it was pretty well explained, but to provide some visuals. Adjacent edges are two nodes that are connected, and there are two basic setups:

In an undirected graph, two nodes A and B connected by an edge are adjacent to each other

undirected graph

In a directed graph, two nodes A and B connected by an edge from A to B means that you can get to B from A (or, B is adjacent to A):

directed graph

压抑⊿情绪 2024-12-26 07:45:53

在 A 指向 B 的有向图中,{A,B} 将包含在图的邻接列表中,而 {B,A} 则不会。也就是说,A 与 B 相邻,但反之则不然。

In a directed graph where A points to B, {A,B} would be included in the graph's adjacency list and {B,A} would not be. That is, A is adjacent to B, but not vice-versa.

夜未央樱花落 2024-12-26 07:45:53

在有向图中,有一条从 v1v2 的边,则 v2v1 相邻。 (从 v1v2,如 v2 是头,v1 是尾。)

在无向图中这是对称的 - 如果 v2v1 相邻,那么 v1 也与 v2 相邻,我们说 <代码>v1 ~ v2。

在有向图中,v1 不一定也与 v2 相邻,因此我们说 v1 ↓ v2

编辑:另外,您将来可以尝试在 CSTheory Stackexchange 网站上提出此类问题 - 您可能会得到更好的答案。

In a digraph, there is an edge from v1 to v2, then v2 is adjacent to v1. (From v1 to v2 as in v2 is the head and v1 is the tail.)

In an undirected graph this is symmetric - if v2 is adjacent to v1 then v1 is also adjacent to v2, and we say v1 ~ v2.

In a digraph, v1 may not necessarily also be adjacent to v2, so we say v1 ↓ v2.

EDIT: also, you could try asking this sort of question on the CSTheory Stackexchange site in the future - you might get better answers.

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文