二分图上的顶点堆积
将无向图的每个节点与正权重相关联。 顶点打包问题是找到权重和最大的节点子集,这样就不会选择有边的两个节点。
解决二分图的顶点填充问题的最有效方法是什么?我已经能够将其表述为节点数两倍的最大流量问题。有没有更有效、可能更直接的方法?
Associate each node of an undirected graph with positive weight. The vertex packing problem is to find a subset of the nodes with the largest sum of weights, such that no two nodes with an edge between them are chosen.
What is the most efficient way of solving the vertex packing problem for a bipartite graph? I have been able to formulate it as a maximum flow problem with twice the number of nodes. Is there a more efficient, possibly direct, approach?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
那么,P 是顶点填充问题的可行解当且仅当 VP 是顶点覆盖问题的可行解。因此,最大顶点填充相当于最小顶点覆盖。最小顶点覆盖又相当于二分图的最大匹配。
Well, P is a feasible solution for the vertex packing problem iff V-P is a feasible solution for the vertex cover problem. Thus a maximum vertex packing is equivalent to a minimum vertex cover. The minimum vertex cover is in turn equivalent to the maximum matching for bipartite graphs.