计算空间和时间重合的有效方法
给定一条 3 维折线 P = {(x1, y1, t1), ..., (xn, yn, tn)}
和另一条折线 Q = {(x1, y1, t1), ..., (xm, ym, tm)}
(m 不一定等于 n,因此折线可以有不同的长度),当移动物体 P 和 Q 的轨迹有一些共同的时间和位置(点 A,如示例图中所示,是一个重合点,因为 (xa, ya, ta)==(xb, yb, tb)显然重合点可能是初始点集之外的点)
这个概念非常简单,视觉角度很容易识别主机托管发生的位置。最难的部分是如何实现一种算法,有效计算重合并返回计算出的(记住:点可能在给定的点集之外)x、y 坐标和共置发生的时间 t!该算法将在 Matlab 中开发,因此我拥有快速工作所需的一切。
此致
Given a 3-dimensional polyline P = {(x1, y1, t1), ..., (xn, yn, tn)}
and another polyline Q = {(x1, y1, t1), ..., (xm, ym, tm)}
(m not necessarly equal to n, so polylines could have different length), coincidence in space and time occurs when the trajectories of moving objects P and Q, have some timing and positioning in common (Point A, as seen in example figure is a coincidence point cause (xa, ya, ta)==(xb, yb, tb)
obviously coincidence point could be a point outside of initial sets of point)
The concept is quite simple and visual perspective easily identify where colocation happen. Hardest part is how to realize an algorithm that efficiently compute coincidence and return the calculated (remember: point could be outside given sets of points) x, y coords and time t of where colocation happens!! This algorithm will be developed in Matlab so I have all necessary to rapidly work.
Best regards
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
假设 x、y、z 是每条折线所有线段的 t 函数,这是一个强力的开始。在 4 维中: P 有段
p1 从 (x_start(t), y_start(t), z_start(t), t) 到 (x_end(t), y_end(t), z_end(t), t)< /code>,同样 Q 的
交集条件为:
[0,1]
中存在alpha
和beta
,其中alpha * px_start(t) + (1 - alpha) * ( px_end(t) - px_start(t)) = beta * qx_start(t) + (1 - beta) * (qx_end(t) - qx_start(t))
以及另外 2 个类似的 y 和 z可解性 条件交集条件取决于什么是函数 x(t)、y(t)、z(t)——线性?多项式? ETC。
assuming that x, y, z are functions of t for all segments of each polyline, here's a brute-force start. in 4 dimensions: P has segments
p1 from (x_start(t), y_start(t), z_start(t), t) to (x_end(t), y_end(t), z_end(t), t)
, and similarly Qthe intersection condition is:
there exists
alpha
andbeta
in[0,1]
wherealpha * px_start(t) + (1 - alpha) * (px_end(t) - px_start(t)) = beta * qx_start(t) + (1 - beta) * (qx_end(t) - qx_start(t))
and 2 more similar conditions for y and zsolvability of the intersection condition depends on what are the functions x(t), y(t), z(t) -- linear? polynomials? etc.