如何通过代理技术找到进化计算的搜索技术?
我正在尝试通过Agent技术寻找新的进化计算搜索技术。我对此没有任何想法,并且想实现它。有人熟悉这个吗?谁能给我推荐一些研究论文?我在谷歌上搜索。我找不到任何有趣的论文。请帮帮我...
I am trying to find new search technique for evolutionary computing through Agent technology. I do not have any idea about this and want to implement it. anybody familiar with this? Can anyone suggest me some research papers for me? I searched on Google. bit I could not find any interesting papers. plz help me...
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(1)
首先,阅读这篇维基百科文章:http://en.wikipedia.org/wiki/Evolutionary_computation
然后你可以更深入地了解多代理的事情:http://age。 iisg.agh.edu.pl/emas/intro.html
这是一篇论文
进化多智能体系统:自适应动态优化方法
来自 cmu.eduL Hanna… - 机械设计杂志,2009 - link.aip.org
本文探讨了由专业战略软件代理组成的虚拟团队的能力
合作和发展以自适应地搜索优化设计空间。我们的目标是
展示并理解这种动态发展的团队如何搜索更多......
被引用 5
检查谁引用了它,然后您有更多:
http://scholar.google.com/scholar?cites=13074976072769467020&as_sdt=2005&sciodt=0,5&hl=en
进化多智能体系统中的搜索策略:合作和奖励对解决方案质量的影响
LH Landry… - 机械设计杂志,2011 - link.aip.org
进化优化框架中战略代理的合作和奖励是
为更好地解决工程设计问题进行探索。这场进化的代理人
多代理系统 (EMAS) 框架相互依赖以提高其性能,...
相关文章
First, read this wikipedia article: http://en.wikipedia.org/wiki/Evolutionary_computation
and then you can go deeper wiht the multi-agent thing: http://age.iisg.agh.edu.pl/emas/intro.html
here is a paper
Evolutionary multi-agent systems: An adaptive and dynamic approach to optimization
from cmu.eduL Hanna… - Journal of Mechanical Design, 2009 - link.aip.org
This paper explores the ability of a virtual team of specialized strategic software agents to
cooperate and evolve to adaptively search an optimization design space. Our goal is to
demonstrate and understand how such dynamically evolving teams may search more ...
Cited by 5
Check who cited it, then you have more:
http://scholar.google.com/scholar?cites=13074976072769467020&as_sdt=2005&sciodt=0,5&hl=en
Search Strategies in Evolutionary Multi-Agent Systems: The Effect of Cooperation and Reward on Solution Quality
LH Landry… - Journal of Mechanical Design, 2011 - link.aip.org
Cooperation and reward of strategic agents in an evolutionary optimization framework is
explored in order to better solve engineering design problems. Agents in this Evolutionary
Multi-Agent Systems (EMAS) framework rely on one another to better their performance, ...
Related articles