Haskell 中的定点组合器
给定定义,定点组合器并不总是产生正确的答案:
fix f = f (fix f)
以下代码不会终止:
fix (\x->x*x) 0
当然,fix
不能总是产生正确的答案,但我想知道,这可以吗有待改进吗?
当然,对于上面的示例,我们可以实现一些看起来像
fix f x | f x == f (f x) = f x
| otherwise = fix f (f x)
并给出正确输出的修复。
不使用上述定义(或者更好的定义,因为这个定义只处理带有 1 个参数的函数)的原因是什么?
The fixed point combinator doesn't always produce the right answer given the definition:
fix f = f (fix f)
The following code does not terminate:
fix (\x->x*x) 0
Of course, fix
can't always produce the right answer, but I was wondering, can this be improved?
Certainly for the above example, one can implement some fix that looks like
fix f x | f x == f (f x) = f x
| otherwise = fix f (f x)
and gives the correct output.
What is the reason the above definition (or something even better, as this one only handle function with 1 parameter) is not used instead?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(5)
定点组合器找到函数的最小定义的定点,在您的情况下是 ⊥ (非终止确实是未定义的值)。
您可以检查,在您的情况下
,即
⊥
确实是\x -> 的固定点x * x
。至于为什么
fix
这么定义:fix
的要点是允许你使用匿名递归,为此您不需要更复杂的定义。Fixed point combinator finds the least-defined fixed point of a function, which is ⊥ in your case (non-termination indeed is undefined value).
You can check, that in your case
i.e.
⊥
really is fixed point of\x -> x * x
.As for why is
fix
defined that way: the main point offix
is to allow you use anonymous recursion and for that you do not need more sophisticated definition.您的示例甚至没有进行类型检查:
这给出了为什么它不能按您的预期工作的线索。匿名函数中的 x 应该是一个函数,而不是一个数字。正如 Vitus 所言,其原因在于,定点组合器是一种无需实际编写递归即可编写递归的方法。一般的想法是,像这样的递归定义
可以写成
您的示例
表达式。
,因此对应于没有意义的
Your example does not even typecheck:
And that gives the clue as to why it doesn't work as you expect. The
x
in your anonymous function is supposed to be a function, not a number. The reason for this is, as Vitus suggests, that a fixpoint combinator is a way to write recursion without actually writing recursion. The general idea is that a recursive definition likecan be written as
Your example
thus corresponds to the expression
which makes no sense.
我不完全有资格谈论什么是“定点组合器”,或者什么是“最小定点”,但是可以使用
fix
式的技术来近似某些功能。将 Scala 示例 第 4.4 节翻译为 Haskell:
该函数通过重复“改进”猜测,直到我们确定它“足够好”。这种模式可以被抽象:
另请参见 Scala by Example 第 5.3 节。
fixApprox
可用于近似传入其中的improve
函数的固定点。它在输入上重复调用improve
,直到输出isGoodEnough
。事实上,您不仅可以使用
myFix
来获取近似值,还可以使用它来获取精确答案。这是一种非常愚蠢的生成素数的方法,但它说明了这一点。嗯...现在我想知道...类似
myFix
的东西是否已经存在?停止...胡格尔时间!诈骗
(a -> a) -> (a -> 布尔值) ->一个-> a
,第一个命中是until
。好吧,你已经有了。事实证明,
myFix = 翻转直到
。I'm not entirely qualified to talk about what the "fixpoint combinator" is, or what the "least fixed point" is, but it is possible to use a
fix
-esque technique to approximate certain functions.Translating Scala by Example section 4.4 to Haskell:
This function works by repeatedly "improving" a guess until we determine that it is "good enough". This pattern can be abstracted:
See also Scala by Example section 5.3.
fixApprox
can be used to approximate the fixed point of theimprove
function passed into it. It repeatedly invokesimprove
on the input until the outputisGoodEnough
.In fact, you can use
myFix
not only for approximations, but for exact answers as well.This is a pretty dumb way to generate primes, but it illustrates the point. Hm...now I wonder...does something like
myFix
already exist? Stop...Hoogle time!Hoogling
(a -> a) -> (a -> Bool) -> a -> a
, the very first hit isuntil
.Well there you have it. As it turns out,
myFix = flip until
.您可能指的是
迭代
:这里您拥有明确可用于分析的所有执行历史记录。 检测固定点
您可以尝试使用然后
,但是尝试
fixed (^2) (1.001 :: Float)
将无限循环,因此您需要开发单独的测试收敛性,即使如此,检测像 1.0 这样的排斥固定点也需要更详细的研究。You probably meant
iterate
:Here you have all the execution history explicitly available for your analysis. You can attempt to detect the fixed point with
and then
but trying
fixed (^2) (1.001 :: Float)
will loop indefinitely, so you'd need to develop separate testing for convergence, and even then detection of repellent fixed points like 1.0 will need more elaborate investigation.您无法按照您提到的方式定义
fix
,因为f x
甚至可能无法比较。例如,考虑下面的例子:You can't define
fix
the way you've mentioned sincef x
may not even be comparable. For instance, consider the example below: