生成随机 64 位整数
我需要你的帮助,请给我一些建议。从编程珍珠我知道,要生成随机 30 位整数,我们应该这样写:
RAND_MAX*rand()+rand()
但是我可以做什么来生成不是 30 位,而是 64 位随机整数呢?我认为如果我将两个30位整数相乘然后再乘以4位整数,这是非常低效的方法,那么我应该使用什么样的方法呢? 我现在正在使用 popcount_1 不同的 64 位方法,我想在随机整数上测试它(我还在测量每个方法完成任务所需的时间)
I need your help and please give me some advice. From programming pearls I know that to generate random 30 bit integer we should write it like this:
RAND_MAX*rand()+rand()
But what could I do for generating not 30, but 64 bit random integer instead? I think that is very inefficient method if I multiply two 30 bit integers and then multiply again 4 bit integer, so what kind of method should I use?
I am using now popcount_1 different method for 64 bit one and I would like to test it on random integers(I am also measuring the time which each one takes to accomplish the task)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(6)
首先,我对您发布的 30 位解决方案表示怀疑
整数。
RAND_MAX
本身可以是一个 31 位值,并且RAND_MAX *
可能会溢出,产生未定义的行为rand() + rand()
(实际上,负值)。
如果您需要的值大于保证最小值
RAND_MAX
,或者就此而言,任何不明显小于
RAND_MAX
,唯一的解决方案是使用连续调用rand()
,并组合这些值,但您需要小心地执行此操作,并且验证结果。 (
rand()
的大多数实现都使用线性全等生成器虽然足以完成某些任务,但不能
在这种情况下特别好。)无论如何,类似:(
rand256
中的代码旨在消除其他情况将
RAND_MAX
值映射到 256 个值时不可避免地会出现偏差。)First, I have my doubts about the solution you post for a 30 bit
integer.
RAND_MAX
itself could be a 31 bit value, andRAND_MAX *
is likely to overflow, producing undefined behaviorrand() + rand()
(and in practice, negative values).
If you need a value larger than the guaranteed minimum of
RAND_MAX
, orfor that matter, anything that isn't significantly smaller than
RAND_MAX
, the only solution will be to use successive calls torand()
, and combine the values, but you need to do this carefully, andvalidate the results. (Most implementations of
rand()
use linearcongruent generators, which while adequate for some tasks, aren't
particularly good in this case.) Anyway, something like:
(The code in
rand256
is designed to eliminate the otherwiseunavoidable bias you get when mapping
RAND_MAX
values to 256 values.)这可能是一个解决方案,无需乘法:
This could be a solution, without multiplication:
如果 boost 是一个选项,您可以使用 增强随机。
If boost is an option, you could use boost random.
随机 64 位 int 本质上是解释为 int 的 64 个随机位。
用随机字节填充长度为 8 的字节数组 (请参见此处)并将它们解释为 int (请参阅此处了解具体方法)。
A random 64 bit int is essentially 64 random bits interpreted as an int.
Fill a byte array of length 8 with random bytes (see here for how) and interpret these as an int (see here for how).
通用解决方案:
使用:
unsigned long long R = genrand();
。位计数器跟踪仍需要的位数。
A generic solution:
Use:
unsigned long long R = genrand<unsigned long long>();
.The
bits
counter keeps track of the number of bits still needed.'返回 0 和 RAND_MAX 之间的伪随机积分值(包括 0 和 RAND_MAX)。' - http://en.cppreference.com/w/cpp/numeric/random /rand
所以你应该使用 RAND_MAX + 1 (这就像逐位生成一个数字,然后将其转换为基数 10)而不是 RAND_MAX。
通过这种方式,您可以生成以 RAND_MAX + 1 为基数(可能带有前导零)的一位、两位、三位等数字,并将它们转换为基数 10 并获得任意大的数字。
您获得的所有大于所需 MAX_VALUE 的内容都可以被丢弃,并且您仍然有 1/(MAX_VALUE + 1) 的概率获得每个数字。
请注意,此方法可能需要一段时间,特别是如果您所需的 MAX_VALUE 远小于丢弃不需要的数字之前可以获得的最大值,因为在 [0 中获取随机数的预期步骤数,MAX_VALUE]使用此算法为:(MAX_OBTAINABLE_VALUE + 1)/(MAX_VALUE + 1)
'Returns a pseudo-random integral value between 0 and RAND_MAX (0 and RAND_MAX included).' - http://en.cppreference.com/w/cpp/numeric/random/rand
So you should use RAND_MAX + 1 (it's like generating a number digit by digit and then converting it to base 10) instead of RAND_MAX.
This way you can generate numbers with one, two, three etc. digits in base RAND_MAX + 1(possibly with leading zeroes) and convert them to base 10 and get arbitrarily large numbers.
Everything that you obtain larger than your desired MAX_VALUE can be discarded and you still get 1/(MAX_VALUE + 1) probability for obtaining each number.
Note, that this method might take a while, especially if your desired MAX_VALUE is a lot less than the maximum value that can be obtained before discarding the numbers that are not desired, as the expected number of steps to obtain a random number in [0, MAX_VALUE] with this algorithm is: (MAX_OBTAINABLE_VALUE + 1)/(MAX_VALUE + 1)