矩阵的逆和乘法
我是矩阵世界的新手,很抱歉我无法弄清楚这个基本问题:
我有四个矩阵(一个未知)。
矩阵 X
x <- c(44.412, 0.238, -0.027, 93.128, 0.238, 0.427, -0.193, 0.673, 0.027,
-0.193, 0.094, -0.428, 93.128, 0.673, -0.428, 224.099)
X <- matrix(x, ncol = 4 )
矩阵 B :需要求解,1 X 4(列 x n 行),具有 b1、b2、b3、b4 值
矩阵 G
g <- c(33.575, 0.080, -0.006, 68.123, 0.080, 0.238, -0.033, 0.468, -0.006,
-0.033, 0.084, -0.764, 68.123, 0.468, -0.764, 205.144)
G <- matrix(g, ncol = 4)
矩阵 A
a <- c(1, 1, 1, 1) # one this case but can be any value
A <- matrix(a, ncol = 1)
解决方案:
B = inv(X) G A # inv(X) is inverse of the X matrix multiplied by G and A
我不知道如何正确解决这个问题,特别是矩阵的逆矩阵。感谢您的帮助。
I am new to world of matrix, sorry for this basic question I could not figure out:
I have four matrix (one unknown).
Matrix X
x <- c(44.412, 0.238, -0.027, 93.128, 0.238, 0.427, -0.193, 0.673, 0.027,
-0.193, 0.094, -0.428, 93.128, 0.673, -0.428, 224.099)
X <- matrix(x, ncol = 4 )
Matrix B : need to be solved , 1 X 4 (column x nrows), with b1, b2, b3, b4 values
Matrix G
g <- c(33.575, 0.080, -0.006, 68.123, 0.080, 0.238, -0.033, 0.468, -0.006,
-0.033, 0.084, -0.764, 68.123, 0.468, -0.764, 205.144)
G <- matrix(g, ncol = 4)
Matrix A
a <- c(1, 1, 1, 1) # one this case but can be any value
A <- matrix(a, ncol = 1)
Solution:
B = inv(X) G A # inv(X) is inverse of the X matrix multiplied by G and A
I did not know how to solve this properly, particularly inverse of the matrix. Appreciate your help.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
我猜尼克和本都是老师,对做别人的作业比我有更大的顾虑,但通往完整解决方案的道路确实如此明显,不这样做并没有多大意义。下一步:
可以通过提供单位矩阵作为第二个参数来调用 QR 求逆方法:
I'm guessing that Nick and Ben are both teachers and have even greater scruples than I do about doing other peoples' homework, but the path to a complete solution was really so glaringly obvious that it didn't make a lot of sense not to tae the next step:
The QR method of inversion can be invoked by supplying an identity matrix as the second argument:
计算上更稳定的解决方案是使用
qr
而不是solve
。请参阅
?qr
中的示例。A more computationally stable solution is to use
qr
rather thansolve
.See the examples in
?qr
.