使用python的urllib2和Beautifulsoup抓取维基百科时删除html标签
我正在尝试抓取维基百科以获取一些用于文本挖掘的数据。我正在使用 python 的 urllib2 和 Beautifulsoup。我的问题是:有没有一种简单的方法可以从我阅读的文本中删除不必要的标签(例如链接“a”或“span”)。
对于这种情况:
import urllib2
from BeautifulSoup import *
opener = urllib2.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
infile = opener.open("http://en.wikipedia.org/w/index.php?title=data_mining&printable=yes")pool = BeautifulSoup(infile.read())
res=pool.findAll('div',attrs={'class' : 'mw-content-ltr'}) # to get to content directly
paragrapgs=res[0].findAll("p") #get all paragraphs
我得到带有大量参考标签的段落,例如:
paragrapgs[0] =
<p><b>Data mining</b> (the analysis step of the <b>knowledge discovery in databases</b> process,<sup id="cite_ref-Fayyad_0-0" class="reference"><a href="#cite_note-Fayyad-0"><span>[</span>1<span>]</span></a></sup> or KDD), a relatively young and interdisciplinary field of <a href="/wiki/Computer_science" title="Computer science">computer science</a><sup id="cite_ref-acm_1-0" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup><sup id="cite_ref-brittanica_2-0" class="reference"><a href="#cite_note-brittanica-2"><span>[</span>3<span>]</span></a></sup> is the process of discovering new patterns from large <a href="/wiki/Data_set" title="Data set">data sets</a> involving methods at the intersection of <a href="/wiki/Artificial_intelligence" title="Artificial intelligence">artificial intelligence</a>, <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>, <a href="/wiki/Statistics" title="Statistics">statistics</a> and <a href="/wiki/Database_system" title="Database system">database systems</a>.<sup id="cite_ref-acm_1-1" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup> The goal of data mining is to extract knowledge from a data set in a human-understandable structure<sup id="cite_ref-acm_1-2" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup> and involves database and <a href="/wiki/Data_management" title="Data management">data management</a>, <a href="/wiki/Data_Pre-processing" title="Data Pre-processing">data preprocessing</a>, <a href="/wiki/Statistical_model" title="Statistical model">model</a> and <a href="/wiki/Statistical_inference" title="Statistical inference">inference</a> considerations, interestingness metrics, <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">complexity</a> considerations, post-processing of found structure, <a href="/wiki/Data_visualization" title="Data visualization">visualization</a> and <a href="/wiki/Online_algorithm" title="Online algorithm">online updating</a>.<sup id="cite_ref-acm_1-3" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup></p>
有什么想法如何删除它们并拥有纯文本吗?
I am trying to crawl wikipedia to get some data for text mining. I am using python's urllib2 and Beautifulsoup. My question is that: is there an easy way of getting rid of the unnecessary tags(like links 'a's or 'span's) from the text I read.
for this scenario:
import urllib2
from BeautifulSoup import *
opener = urllib2.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
infile = opener.open("http://en.wikipedia.org/w/index.php?title=data_mining&printable=yes")pool = BeautifulSoup(infile.read())
res=pool.findAll('div',attrs={'class' : 'mw-content-ltr'}) # to get to content directly
paragrapgs=res[0].findAll("p") #get all paragraphs
I get the paragraphs with lots of reference tags like:
paragrapgs[0] =
<p><b>Data mining</b> (the analysis step of the <b>knowledge discovery in databases</b> process,<sup id="cite_ref-Fayyad_0-0" class="reference"><a href="#cite_note-Fayyad-0"><span>[</span>1<span>]</span></a></sup> or KDD), a relatively young and interdisciplinary field of <a href="/wiki/Computer_science" title="Computer science">computer science</a><sup id="cite_ref-acm_1-0" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup><sup id="cite_ref-brittanica_2-0" class="reference"><a href="#cite_note-brittanica-2"><span>[</span>3<span>]</span></a></sup> is the process of discovering new patterns from large <a href="/wiki/Data_set" title="Data set">data sets</a> involving methods at the intersection of <a href="/wiki/Artificial_intelligence" title="Artificial intelligence">artificial intelligence</a>, <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>, <a href="/wiki/Statistics" title="Statistics">statistics</a> and <a href="/wiki/Database_system" title="Database system">database systems</a>.<sup id="cite_ref-acm_1-1" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup> The goal of data mining is to extract knowledge from a data set in a human-understandable structure<sup id="cite_ref-acm_1-2" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup> and involves database and <a href="/wiki/Data_management" title="Data management">data management</a>, <a href="/wiki/Data_Pre-processing" title="Data Pre-processing">data preprocessing</a>, <a href="/wiki/Statistical_model" title="Statistical model">model</a> and <a href="/wiki/Statistical_inference" title="Statistical inference">inference</a> considerations, interestingness metrics, <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">complexity</a> considerations, post-processing of found structure, <a href="/wiki/Data_visualization" title="Data visualization">visualization</a> and <a href="/wiki/Online_algorithm" title="Online algorithm">online updating</a>.<sup id="cite_ref-acm_1-3" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup></p>
Any ideas how to remove them and have pure text?
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(3)
这就是你如何使用
lxml
(以及可爱的请求
):This is how you could do it with
lxml
(and the lovelyrequests
):此外,您可以使用
api.php
而不是index.php
:输出
Additionally you could use
api.php
instead ofindex.php
:Output
这些似乎适用于 Beautiful soup 标签节点。父节点被修改,因此相关标签被删除。找到的标签也会作为列表返回给调用者。
These seem to work on Beautiful soup tag nodes. The parentNode gets modified so the relevant tags are removed. The found tags are also returned as lists back to the caller.