三维霍夫空间

发布于 2024-12-14 11:26:51 字数 83 浏览 0 评论 0原文

我正在搜索图像中圆的半径和中心坐标。已经尝试过二维霍夫变换。但我的圆半径也是未知的。我仍然是计算机视觉的初学者,因此需要引导线和帮助来实现三维霍夫空间。

Im searching for radius and the center coordinates of circle in a image. have already tried 2D Hough transform. but my circle radius is also a unknown. Im still a beginner to Computer vision so need guild lines and help for implementing three dimensional hough space.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。

评论(2

只是一片海 2024-12-21 11:26:51

您可以像二维霍夫空间一样实现它,但需要一个附加参数。伪代码如下所示:

for each (x,y) in image
     for each test_radius in [min_radius .. max_radius]
         for each point (tx,ty) in the circle with radius test_radius around (x,y)
             HoughSpace(tx,ty,test_radius) += image(x,y)

You implement it just like 2D Hough space, but with an additional parameter. Pseudo code would look like this:

for each (x,y) in image
     for each test_radius in [min_radius .. max_radius]
         for each point (tx,ty) in the circle with radius test_radius around (x,y)
             HoughSpace(tx,ty,test_radius) += image(x,y)
古镇旧梦 2024-12-21 11:26:51

Thiton 为您提供了将问题形式化的正确方法。但随后,您将遇到霍夫变换固有的其他问题:

  • 如何可视化参数空间?您可以使用像 VTK 这样的库来实现一些东西,但是数据的 3D 可视化始终是一个困难的话题。可视化对于调试检测算法非常重要,并且是 2D 霍夫变换的好处之一

  • 局部最大值检测并非微不足道。新的维度将意味着你的参数空间将更加稀疏。您将在该区域进行更多调整

如果你正在寻找一个圆检测算法,你可能有比霍夫变换更好的选择(谷歌“使用梯度对向量的快速圆检测”对我来说看起来不错)

Thiton gives you the correct approach to formalize the problem. But then, you will run in other problems inherent to the hough transform:

  • how do you visualize the parameter space? You may implement something with a library like VTK, but 3D visualization of data is always a difficult topic. The visualization is important for debugging your detection algorithm and is one of the nice thing with 2D hough transform

  • the local maximum detection is non trivial. The new dimension will mean that your parameter space will be more sparse. You will have more tuning to do in this area

If you are looking for a circle detection algorithm, you may have better options than the hough transform (google "Fast Circle Detection Using Gradient Pair Vectors" looks good to me)

~没有更多了~
我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
原文