遗传算法在Python中暂停?
我在 python 中实现了一个简单的遗传算法 - 这是大部分代码:
import random
ings = (('w1', 200, 25, 80),
('su1', 50, 55, 150),
('su2', 400, 100, 203),
('sy1', 10, 150, 355),
('sy2', 123, 88, 101),
('sy3', 225, 5, 30),
('sy4', 1, 44, 99),
('sy5', 500, 220, 300))
mutationRate = 0.2
crossoverRate = 0.9
iterations = 100
file = open('D:\\logfile2.txt', 'a')
class Ingredient:
def __init__(self, n, p, mi, ma):
self.name = n
self.price = p
self.min = mi
self.max = ma
self.perc = random.randrange(self.min, self.max)
class Drink:
def __init__(self):
self.ing = [Ingredient(*x) for x in ings]
self.normalize()
self.fitness = self.evaluate()
def normalize(self):
sum = 0
for x in self.ing:
sum += x.perc
if sum < 1000:
offset = 1000 - sum
while not offset == 0:
index = random.randrange(len(self.ing))
val = self.ing[index].max - self.ing[index].perc
threshold = random.randrange(val) if val > 0 else 0
threshold = threshold if threshold < offset else offset
self.ing[index].perc += threshold
offset -= threshold
if sum > 1000:
offset = sum - 1000
while not offset == 0:
index = random.randrange(len(self.ing))
val = self.ing[index].perc - self.ing[index].min
threshold = random.randrange(val) if val > 0 else 0
threshold = threshold if threshold < offset else offset
self.ing[index].perc -= threshold
offset -= threshold
def evaluate(self):
fitness = 0
for x in self.ing:
fitness += x.perc * x.price
return 300000 - fitness
class GeneticAlgorithm:
def __init__(self):
self.drinkList = [Drink() for x in range(8)]
self.pool = []
def mutate(self, index):
ing1, ing2 = random.randrange(8), random.randrange(8)
while ing1 == ing2:
ing2 = random.randrange(8)
ptr = self.drinkList[index].ing
ing1thr = ptr[ing1].max - ptr[ing1].perc
ing2thr = ptr[ing2].perc - ptr[ing2].min
if ing1thr & ing2thr:
change = random.randrange(ing1thr if ing1thr < ing2thr else ing2thr)
ptr[ing1].perc += change
ptr[ing2].perc -= change
def crossover(self, index1, index2):
ing1, ing2 = random.randrange(8), random.randrange(8)
while ing1 == ing2:
ing2 = random.randrange(8)
ptr1 = self.drinkList[index1].ing[:]
ptr2 = self.drinkList[index2].ing[:]
resultIndex1 = random.randrange(len(self.drinkList))
while True:
resultIndex2 = random.randrange(len(self.drinkList))
if not resultIndex1 == resultIndex2:
break
bias = 1 if ptr1[ing1].perc > ptr2[ing1].perc else -1
if bias == 1:
maxChange = min(ptr1[ing1].perc - ptr1[ing1].min,
ptr1[ing2].max - ptr1[ing2].perc,
ptr2[ing1].max - ptr2[ing1].perc,
ptr2[ing2].perc - ptr2[ing2].min)
if maxChange:
change = random.randrange(maxChange)
ptr1[ing1].perc -= change
ptr1[ing2].perc += change
ptr2[ing1].perc += change
ptr2[ing2].perc -= change
self.drinkList[resultIndex1].ing = ptr1[:]
self.drinkList[resultIndex2].ing = ptr2[:]
if bias == -1:
maxChange = min(ptr1[ing1].max - ptr1[ing1].perc,
ptr1[ing2].perc - ptr1[ing2].min,
ptr2[ing1].perc - ptr2[ing1].min,
ptr2[ing2].max - ptr2[ing2].perc)
if maxChange:
change = random.randrange(maxChange)
ptr1[ing1].perc += change
ptr1[ing2].perc -= change
ptr2[ing1].perc -= change
ptr2[ing2].perc += change
self.drinkList[resultIndex1].ing = ptr1[:]
self.drinkList[resultIndex2].ing = ptr2[:]
def roulette(self):
sum = 0
lst = []
for x in self.drinkList:
sum += x.fitness
lst.append(sum)
return lst
def selectOne(self):
selection = random.randrange(self.pool[-1])
index = 0
while selection >= self.pool[index]:
index += 1
return index
def selectCouple(self):
selection1 = random.randrange(self.pool[-1])
index1, index2 = 0, 0
while selection1 >= self.pool[index1]:
index1 += 1
while True:
selection2 = random.randrange(self.pool[-1])
while selection2 >= self.pool[index2]:
index2 += 1
if not index1 == index2: break
return (index1, index2)
def save(self, text):
file.write(text)
for x in self.drinkList:
for y in x.ing:
file.write('min: ' + str(y.min) +
' max: ' + str(y.max) +
' value: ' + str(y.perc) + '\n')
file.write('\n\n')
file.write('\nPopulation fitness: ' +
str(self.calculatePopulationFitness()) +
'\n\n----------------------------------------------\n\n')
def run(self):
file.write("Genetic algorithm\n\nAttributes values:\n" +
"Mutation rate: " + str(mutationRate) +
"\nCrossover rate: " + str(crossoverRate) +
"\nIterations: " + str(iterations) +
"\nIngredients:\n\n" + str(ings))
self.save('\n\n--First population--\n\n')
for cnt in range(iterations):
self.updateFitness()
self.pool = self.roulette()
if random.random() < mutationRate:
index = self.selectOne()
self.showFitness('Mutation in iteration ' + str(cnt))
self.mutate(index)
self.updateFitness()
self.showFitness('Results: ')
if random.random() < crossoverRate:
index1, index2 = self.selectCouple()
self.showFitness('Crossover in iteration ' + str(cnt))
self.crossover(index1, index2)
self.updateFitness()
self.showFitness('Results: ')
self.save('--Final population--\n\n')
def calculatePopulationFitness(self):
sum = 0
for x in self.drinkList:
sum += x.fitness
return sum
def updateFitness(self):
for x in self.drinkList:
x.fitness = x.evaluate()
def showFitness(self, text):
lst = [x.fitness for x in self.drinkList]
all = sum(lst)
file.write(text + '\n' + str(lst) + '||' + str(all) + '\n')
为了运行它,我创建了 GeneticAlgorithm 的实例并通过 run() 方法启动它。 问题是,对于低级别的迭代,程序或多或少工作得很好,但如果我将迭代设置为 50,例如,它似乎陷入无限循环或随机迭代挂起(日志文件不再更新,程序也这样做)不停止 - 随机迭代发生)。这可能是什么原因造成的?
PS:您能建议对编码风格进行任何更改吗?我对 python 很陌生,还不知道所有的约定。
I have implemented a simple genetic algorithm in python - here is the most of the code:
import random
ings = (('w1', 200, 25, 80),
('su1', 50, 55, 150),
('su2', 400, 100, 203),
('sy1', 10, 150, 355),
('sy2', 123, 88, 101),
('sy3', 225, 5, 30),
('sy4', 1, 44, 99),
('sy5', 500, 220, 300))
mutationRate = 0.2
crossoverRate = 0.9
iterations = 100
file = open('D:\\logfile2.txt', 'a')
class Ingredient:
def __init__(self, n, p, mi, ma):
self.name = n
self.price = p
self.min = mi
self.max = ma
self.perc = random.randrange(self.min, self.max)
class Drink:
def __init__(self):
self.ing = [Ingredient(*x) for x in ings]
self.normalize()
self.fitness = self.evaluate()
def normalize(self):
sum = 0
for x in self.ing:
sum += x.perc
if sum < 1000:
offset = 1000 - sum
while not offset == 0:
index = random.randrange(len(self.ing))
val = self.ing[index].max - self.ing[index].perc
threshold = random.randrange(val) if val > 0 else 0
threshold = threshold if threshold < offset else offset
self.ing[index].perc += threshold
offset -= threshold
if sum > 1000:
offset = sum - 1000
while not offset == 0:
index = random.randrange(len(self.ing))
val = self.ing[index].perc - self.ing[index].min
threshold = random.randrange(val) if val > 0 else 0
threshold = threshold if threshold < offset else offset
self.ing[index].perc -= threshold
offset -= threshold
def evaluate(self):
fitness = 0
for x in self.ing:
fitness += x.perc * x.price
return 300000 - fitness
class GeneticAlgorithm:
def __init__(self):
self.drinkList = [Drink() for x in range(8)]
self.pool = []
def mutate(self, index):
ing1, ing2 = random.randrange(8), random.randrange(8)
while ing1 == ing2:
ing2 = random.randrange(8)
ptr = self.drinkList[index].ing
ing1thr = ptr[ing1].max - ptr[ing1].perc
ing2thr = ptr[ing2].perc - ptr[ing2].min
if ing1thr & ing2thr:
change = random.randrange(ing1thr if ing1thr < ing2thr else ing2thr)
ptr[ing1].perc += change
ptr[ing2].perc -= change
def crossover(self, index1, index2):
ing1, ing2 = random.randrange(8), random.randrange(8)
while ing1 == ing2:
ing2 = random.randrange(8)
ptr1 = self.drinkList[index1].ing[:]
ptr2 = self.drinkList[index2].ing[:]
resultIndex1 = random.randrange(len(self.drinkList))
while True:
resultIndex2 = random.randrange(len(self.drinkList))
if not resultIndex1 == resultIndex2:
break
bias = 1 if ptr1[ing1].perc > ptr2[ing1].perc else -1
if bias == 1:
maxChange = min(ptr1[ing1].perc - ptr1[ing1].min,
ptr1[ing2].max - ptr1[ing2].perc,
ptr2[ing1].max - ptr2[ing1].perc,
ptr2[ing2].perc - ptr2[ing2].min)
if maxChange:
change = random.randrange(maxChange)
ptr1[ing1].perc -= change
ptr1[ing2].perc += change
ptr2[ing1].perc += change
ptr2[ing2].perc -= change
self.drinkList[resultIndex1].ing = ptr1[:]
self.drinkList[resultIndex2].ing = ptr2[:]
if bias == -1:
maxChange = min(ptr1[ing1].max - ptr1[ing1].perc,
ptr1[ing2].perc - ptr1[ing2].min,
ptr2[ing1].perc - ptr2[ing1].min,
ptr2[ing2].max - ptr2[ing2].perc)
if maxChange:
change = random.randrange(maxChange)
ptr1[ing1].perc += change
ptr1[ing2].perc -= change
ptr2[ing1].perc -= change
ptr2[ing2].perc += change
self.drinkList[resultIndex1].ing = ptr1[:]
self.drinkList[resultIndex2].ing = ptr2[:]
def roulette(self):
sum = 0
lst = []
for x in self.drinkList:
sum += x.fitness
lst.append(sum)
return lst
def selectOne(self):
selection = random.randrange(self.pool[-1])
index = 0
while selection >= self.pool[index]:
index += 1
return index
def selectCouple(self):
selection1 = random.randrange(self.pool[-1])
index1, index2 = 0, 0
while selection1 >= self.pool[index1]:
index1 += 1
while True:
selection2 = random.randrange(self.pool[-1])
while selection2 >= self.pool[index2]:
index2 += 1
if not index1 == index2: break
return (index1, index2)
def save(self, text):
file.write(text)
for x in self.drinkList:
for y in x.ing:
file.write('min: ' + str(y.min) +
' max: ' + str(y.max) +
' value: ' + str(y.perc) + '\n')
file.write('\n\n')
file.write('\nPopulation fitness: ' +
str(self.calculatePopulationFitness()) +
'\n\n----------------------------------------------\n\n')
def run(self):
file.write("Genetic algorithm\n\nAttributes values:\n" +
"Mutation rate: " + str(mutationRate) +
"\nCrossover rate: " + str(crossoverRate) +
"\nIterations: " + str(iterations) +
"\nIngredients:\n\n" + str(ings))
self.save('\n\n--First population--\n\n')
for cnt in range(iterations):
self.updateFitness()
self.pool = self.roulette()
if random.random() < mutationRate:
index = self.selectOne()
self.showFitness('Mutation in iteration ' + str(cnt))
self.mutate(index)
self.updateFitness()
self.showFitness('Results: ')
if random.random() < crossoverRate:
index1, index2 = self.selectCouple()
self.showFitness('Crossover in iteration ' + str(cnt))
self.crossover(index1, index2)
self.updateFitness()
self.showFitness('Results: ')
self.save('--Final population--\n\n')
def calculatePopulationFitness(self):
sum = 0
for x in self.drinkList:
sum += x.fitness
return sum
def updateFitness(self):
for x in self.drinkList:
x.fitness = x.evaluate()
def showFitness(self, text):
lst = [x.fitness for x in self.drinkList]
all = sum(lst)
file.write(text + '\n' + str(lst) + '||' + str(all) + '\n')
To run it I create an instance of GeneticAlgorithm and launch it through run() method.
The problem is, for low level of iterations the program works more or less fine, but if I set iteration to 50 for example, it seems to fall in infinite loop or suspend at random iteration (the logfile is not updated anymore and the program does not stop - happenes at random iteration). What can be the cause of this?
PS: Can you suggest any changes to the coding style? I'm quite new to python and i don't know all the conventions yet.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论
评论(2)
我不完全理解你的算法,但看起来你的代码挂在这个循环中:
它达到了你永远不会得到索引1!=索引2的值的地步。这可能表明您的代码中某个地方有错误,或者不存在满足此条件的情况。您可以尝试对其迭代次数设置上限,例如:
I don't completely understand your algorithm but it looks like your code hangs in this loop here:
It gets to a point where you never get a value where index1 != index2. This could either indicate you have a mistake somewhere in your code, or that there isn't a situation that meets this condition. You could try putting a cap on the number of iterations of this, for example:
我知道这个问题已经存在一年多了。我仍然想要一个 python 中的 GA 代码来开始并发现问题。
问题出在这个循环中。一旦发现 index2 相等,在尝试查找新值之前,它不会重置为零。
I know the question is more than a year old. Still I wanted a GA code in python to start with and found the problem.
The problem is in this loop. once index2 is found to be equal it is not reset back to zero before trying to find a new value.